

HORIZON 2020

Research and Innovation framework programme

Topic EE-14-2016-2017

Project Code: **785019**

ASOCIACIÓN:

- · Fundación Laboral de la Construcción
- · Instituto de Ciencias de la Construcción Eduardo Torroja
- · Fundación Estatal para la Formación en el Empleo
- · Instituto Nacional de las Cualificaciones
- · Centro de Investigación de Recursos y Consumos Energéticos
- · Institut de Robòtica i de Tecnologies de la Informació i de les Comunicacions

El apoyo de la Comisión Europea para la elaboración de esta publicación no implica la aceptación de sus contenidos, que es responsabilidad exclusiva de los autores. Por tanto, la Comisión no es responsable del uso que pueda hacerse de la información aquí difundida

PRESENTACIÓN

Las últimas Directivas europeas en materia de energía, y con ello la propia reglamentación de nuestro país, tienden a incentivar las inversiones en la eficiencia energética de nuestros edificios, tanto los nuevos, como existentes en los que se acometan reformas de cierta entidad que puedan afectar a su consumo de energía.

Sin embargo, queda fuera de regulación un amplio grupo de edificios de nuestro parque inmobiliario que no se ven sujetos a la obligación de cumplir los estándares normativos, al no tener la necesidad de reformar sus fachadas o equipos de climatización.

En este conjunto de edificios, la mayor parte de ellos de viviendas, cabe hacerse la siguiente pregunta ¿es rentable invertir en eficiencia energética?

La respuesta puede resultar más compleja de lo esperado y aunque a grandes rasgos se trate de un sí rotundo, el clima de la localidad, así como las condiciones de partida del edificio marcan el camino que debe recorrer nuestra inversión para otorgar al propietario la amortización del capital aportado en el plazo de tiempo más breve posible.

El presente manual pretende dotar al alumno de los conocimientos necesarios para establecer sencillos estudios de rentabilidad económica, abordando las variables que se deben considerar y ofreciendo un conjunto de 22 propuestas en eficiencia energética ensayadas sobre un edificio tipo en 4 localidades españolas representativas de la variedad de nuestra climatología.

OBJETIVOS GENERALES

- Conocer la repercusión de las Directivas Europeas de energía en la normativa de nuestro país.
- Distinguir entre los estándares de los edificios nuevos y los que aplican a las intervenciones realizadas en inmuebles existentes.
- Comprender las variables que condicionan una inversión en eficiencia energética y cómo se relacionan con el fin de establecer estimaciones de rentabilidad y plazos de amortización.
- Comprender las bases del cálculo empleadas en el estudio de rentabilidad de diversas mejoras energéticas sobre un mismo edificio.

Unidades didácticas

- 1. El contexto normativo y las medidas de eficiencia energética
- 2. Principios básicos de la rentabilidad económica de la eficiencia energética
- 3. Buenas prácticas para la mejora de la rentabilidad económica de la eficiencia energética.

Metodología

El curso es de modalidad mixta:

- On-line (32 horas). El alumno se conecta a la plataforma Moodle, donde están disponibles los contenidos teóricos del curso apoyados con imágenes, vídeos, animaciones digitales y ejercicios prácticos.
- En aula-taller (24 horas): donde el alumno asistirá al centro de formación para realizar las prácticas de instalación de aislamiento en edificios.

El curso en su globalidad está integrado en la plataforma Moodle, donde cada unidad didáctica se conforma en tres partes:

EN CASA

Se trata de la teoría del curso, que el alumno puede consultar a través del ordenador o dispositivo móvil. Esta teoría está acompañada de juegos interactivos y tests.

EN CLASE

Descripción de las prácticas que se van a realizar en el aula taller. Es una sección meramente informativa.

CREA

Ejercicios prácticos en los que el alumno pone en práctica sus conocimientos. En general, se trata de fotos o descripciones que hay que subir a la plataforma.

Además, el curso cuenta con dos herramientas de comunicación con el docente y con el alumnado:

Espacio donde se abrirán líneas de diálogo entre el docente y los alumnos.

Línea de diálogo entre el docente y el alumnado.

GI OSADIO

Vínculo al diccionario de la construcción, donde se definen términos técnicos de la construcción.

Evaluación

Para superar este curso, el alumno debe superar la parte on-line y la parte presencial, con un mínimo de calificación de 5 en cada bloque.

- El **bloque de la formación on-line** cuenta con:
 - Un examen final.

Se trata una prueba con 10 preguntas sobre los bloques teóricos tratados en el curso, de los que hay que acertar al menos 5.

Hay tres intentos para poder aprobar. Los dos primeros estarán disponibles después de haber pasado por todas las unidades didácticas. El tercero, se habilitará 32 horas después de haber realizado el segundo intento.

La nota del examen final supondrá un 30% de la nota global del curso.

- Ejercicios prácticos (apartado "Crea" de la plataforma on-line).

Se trata de ejercicios en los que el alumno debe poner en práctica sus conocimientos.

Los ejercicios serán evaluados por el docente y supondrán un 10% de la nota global del curso.

- · El bloque de la formación práctica cuenta con:
 - Prácticas en el aula, en las que el docente evaluará las actividades previstas sobre la instalación de aislamiento.

La nota mínima para superar este bloque será un 5 y supondrá un 60% de la nota global del curso.

Distintivo eco

Una vez superado el curso, el/la alumno/a recibirá un diploma que incluirá un logotipo que corresponde al denominado "distintivo eco", que se puede incluir como documento en el sistema digital de la Tarjeta Profesional de la Construcción.

UNIDAD 1: **EL CONTEXTO NORMATIVO Y** LAS MEDIDAS DE EFICIENCIA **ENERGÉTICA**

CONTENIDOS

- 1. Introducción
- 2. Legislación aplicable en edificios nuevos y existentes
- 3. Medidas de eficiencia energética: definición y clasificación
- 4. Adopción de medidas de eficiencia energética

Resumen

OBJETIVOS DE LA UNIDAD DIDÁCTICA:

- Conocer la repercusión de las Directivas europeas de energía en la normativa de nuestro país.
- Distinguir entre los estándares de los edificios nuevos y los que aplican a las intervenciones realizadas en inmuebles existentes.

1. INTRODUCCIÓN

La reducción del consumo energético y la paulatina eliminación de los combustibles tradicionales derivados del petróleo en nuestros edificios, es sin duda el objetivo a medio plazo al que debemos aspirar, tanto por el elevado coste económico que supone, con un previsible aumento en los próximos años, como ambiental, debido a las emisiones de CO2 y otros gases contaminantes asociados a su uso.

En esta unidad se abordará la repercusión de las Directivas europeas de energía en la normativa de nuestro país y con ello en los estándares de los edificios nuevos que construimos o en las intervenciones realizadas en inmuebles existentes.

2. LEGISLACIÓN APLICABLE EN EDIFICIOS NUEVOS Y EXISTENTES

2.1 De las Directivas Europeas a la normativa española

Los compromisos adquiridos en el protocolo de Kioto (1997) por la Unión Europea derivaron posteriormente en la Directiva 2002/91/CE relativa a la eficiencia energética de los edificios (conocida por sus siglas en inglés **EPBD 2002**: Energy Performance of Buildings Directive 2002), en la Directiva 2010/31/UE del Parlamento Europeo, y finalmente en el Reglamento (UE) 2018/1999 del Parlamento Europeo y del Consejo que modifica las anteriores.

La EPBD 2002 y sus posteriores modificaciones marcan las pautas que deben seguir los distintos países miembros de la Unión Europea, entre ellos España, en diferentes aspectos:

- 1. La adopción de una metodología de cálculo de la eficiencia energética integrada de los edificios, de manera que todos los países empleen los mismos criterios para estimar sus consumos y por tanto los resultados sean comparables.
- 2. La aplicación de unos requisitos mínimos de eficiencia energética a los edificios nuevos y a los edificios existentes que sean objeto de reformas importantes.
- 3. Creación de los protocolos de **Certificación Energética** en edificios nuevos y existentes, como medio para medir tanto su estado actual en cada país como su evolución en el futuro.
- 4. La inspección periódica de calderas y sistemas de aire acondicionado de más de 15 años o según su potencia, sustituyendo los equipos que no alcancen ciertos estándares de rendimiento.
- 5. Aplicar un mayor control a los productos de construcción, de manera que informen con precisión de sus prestaciones térmicas, acústicas, etc.

2.2 Enfoque del Código Técnico de la Edificación

El Código Técnico de la Edificación, y en particular su documento básico de ahorro de energía CTE-DB-HE es la consecuencia de la trasposición de la EPBD 2002 a nuestra normativa de edificación.

Como objetivo principal, el CTE-DB-HE establece la reducción del consumo de energía no renovable de nuestros edificios. Con este fin, en su desarrollo documental cuenta con 5 apartados que abarcan desde la limitación en la energía demandada hasta el rendimiento de las instalaciones o el uso obligatorio de energías renovables.

Objetivo principal: Reducir el consumo energético

Figura 1.1. Objetivos y organización documental del CTE-HE 2019

Empleando la relación entre demanda, consumo y rendimiento de las instalaciones del edificio, podemos decir que cada apartado del CTE-HE se encarga de uno de los factores principales de la ecuación que regula el consumo de energía del edificio:

Figura 1.2. Relación entre el CTE-HE 2019 y la ecuación de cálculo del consumo de un edificio

Tal y como establece la Directiva EPBD, los objetivos de eficiencia energética de cada país miembro de la Unión Europea deben ser revisados y actualizados cada 5 años, lo que ocurrió con la Orden FOM /1635/2013, y posteriormente con el Real Decreto 732/2019.

Este documento no solo establece los límites de eficiencia energética a los edificios de nueva construcción, sino también a las reformas y rehabilitaciones que se realicen en inmuebles existentes, determinando tres niveles de aplicación:

1. Los edificios de nueva construcción deberán cumplir las exigencias en eficiencia energética del CTE-HE 2019

- 2. Intervenciones en edificios existentes: reformas superiores al 25% de la envolvente, cambio de uso del edificio (cuando la superficie útil total supere los 50 m2) o renovación de las instalaciones del edificio deberán limitar su demanda de energía a los establecido por el CTE-HE en el año 2019 (lo que se entiende como edificio de referencia).
- 3. En reformas de entidad inferior a las de nivel 2 se exige que los elementos modificados atiendan a tres principios básicos:
 - a. No empeorar lo existente.
 - b. Alcanzar al menos el nivel de eficiencia de los elementos originales del edificio.
 - c. Cumplir de forma individual las limitaciones establecidas en el CTE-HE 2019.

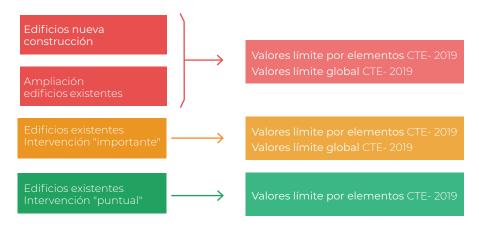


Figura 1.3. Valores límite de consumo de energía según edificios de nueva construcción o intervención en edificios existentes

Si deseamos reformar por completo la fachada de un edificio deberemos realizar el cálculo del espesor del aislamiento de manera que su demanda de energía sea similar a la establecida en el CTE-2019.

Sin embargo, si tan solo cambiamos las ventanas y estas no superan el 25% de la envolvente (entendida a grandes rasgos como la suma de fachadas, cubiertas y suelos en contacto con el terreno) tan solo tendremos que cumplir el nivel de aislamiento del CTE-HE 2013 para ventanas

.... ¿y si en una de las viviendas las ventanas son mejores que las establecidas en el CTE-HE 2013?

Entonces no puedo empeorarlas, y si las cambio, al menos debes tener las mismas prestaciones térmicas que las existentes.

... ¿y si en el proyecto original las ventanas eran mejores que las establecidas en el CTE-HE 2013, a pesar de que posteriormente se hayan modificado?

Igualmente, no puedo empeorarlas, tendré que disponer ventanas de prestaciones térmicas similares o superiores a las del proyecto original.

Para ello será necesario conocer los valores límite fijados por el CTE para la transmitancia de cada elemento.

Flomente		Zona climática de invierno				
Elemento	α	Α	В	С	D	E
Muros y suelos en contacto con el aire exterior (Us, Um)	0,80	0,70	0,56	0,49	0,41	0,37
Cubiertas en contacto con el aire exterior (Uc)	0,55	0,50	0,44	0,40	0,35	0,33
Muros, suelos y cubiertas en contacto con espacios no habitables o con el terreno (U_T) Medianerías o particiones interiores pertenecientes a la envolvente térmica (U_{MD})	0,90	0,80	0,75	0,70	0,65	0,59
$\it Huecos$ (conjunto de marco, vidrio y, en su caso, cajón de persiana) ($\it U_H$)*	3,2	2,7	2,3	2,1	1,8	1,80
Puertas con superficie semitransparente igual o inferior al 50%	5,7					

^{*}Los huecos con uso de escaparate en unidades de uso con actividad comercial pueden incrementar el valor de U_H en un 50%.

Los valores límite de transmitancia aseguran una calidad mínima de la envolvente térmica y evitan descompensaciones en la calidad térmica de los espacios del edificio. Sin embargo, estos valores no aseguran un nivel de demanda adecuado, limitado por el coeficiente global de transmisión de calor (K).

Figura 1.4. Tabla 3.1.1.a - HE1 Valores límite de transmitancia térmica, Ulim [W/m²K]

Y la importancia del coeficiente global de envolvente térmica, que será la media de la transmitancia térmica de cada elemento que compone la envolvente en función de su área. Para la cual, no se tendrán en cuenta medianerías ni cerramientos que no tengan intercambio de calor con el exterior, pero si los puentes térmicos.

El CTE-HE 2019 es la actual normativa que regula los consumos de energía de nuestros edificios como fruto de transposición de las directivas europeas en la materia.

En el CTE-HE 2019 se establecen limitaciones de consumo de energía primaria no renovable y de energía primaria total. Asimismo, limita la demanda de energía, indirectamente, a través de las condiciones de la envolvente y la ventilación y fija condiciones para el rendimiento de las instalaciones (a través del RITE) y obliga a la incorporación de energías renovables en determinados edificios.

2.3 La eficiencia energética en el Reglamento de Instalaciones Térmicas

El Reglamento de Instalaciones Térmicas en los Edificios (RITE) establece las condiciones que deben cumplir las instalaciones destinadas a atender la demanda de bienestar térmico e higiene a través de las instalaciones de calefacción, climatización y agua caliente sanitaria (ACS), para conseguir un uso racional de la energía.

Si en el CTE-HE buscábamos las condiciones de aislamiento de nuestro edificio para reducir su demanda, en el RITE encontraremos las restricciones en el rendimiento de nuestros equipos de climatización y ACS, así como las condiciones de:

- · Aislamiento en los equipos y conducciones de los fluidos térmicos.
- Regulación y control para mantener las condiciones de diseño previstas en los locales climatizados.
- · Utilización de energías renovables disponibles, en especial la energía solar y la biomasa.
- · Sistemas obligatorios de contabilización de consumos en el caso de instalaciones colectivas.
- · Condiciones de inspecciones periódicas en las instalaciones.

2.4 La certificación energética de edificios existentes

El procedimiento de certificación energética se rige por el Real Decreto 564/2017, y se trata de un proceso de comparación entre el consumo de energía primaria y las emisiones de CO2 de nuestro edificio (edificio objeto) y lo que se considera un consumo razonable para la zona climática en la que se encuentra, o lo que es lo mismo, comparar nuestro edificio con un edificio de "referencia" cuya calidad constructiva corresponda a los establecido por el CTE HE-2019.

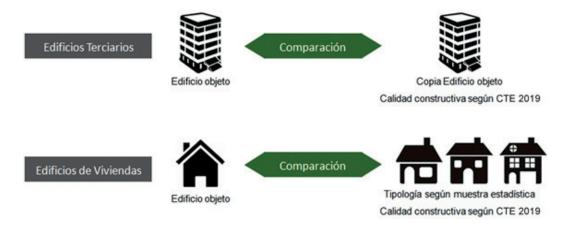


Figura 1.4. Procedimiento de comparación en la certificación energética.lconos seleccionados de www.flaticon.es

A partir de dicha comparación se establece una escala de certificación energética única para todo el territorio nacional formada por un conjunto de letras de la A a la G, representando la A el nivel más elevado de eficiencia.

Cada letra representa una clase de eficiencia a la que se asigna unos límites de consumo o emisiones que varían según el uso del edificio (viviendas o terciarios) y la zona climática de la localidad.

En esta escala se representan dos indicadores: consumo de energía primaria y emisiones asociadas de CO2.

En ambos casos lo hemos venido a denominar "edificio de referencia" que se puede situar en una letra D en la escala, cercana a alcanzar una C, lo que en cierto modo establece una cierta relación entre la calificación energética que previsiblemente alcanzará nuestro edificio y el período normativo en el que fue creado.

Figura 1.5. Escala de certificación energética e indicadores representados

Dicho lo anterior, propongamos un simple ejercicio: ¿resultaría lógico que un edificio anterior al CTE-2019 alcanzara una calificación equivalente a un edificio posterior a esta fecha, si en él no se han realizado grandes reformas?

Lógicamente no, su calificación será peor, puesto que su calidad constructiva será acorde con el año en el que se construyó y la reglamentación que existiera (menos exigente que la actual).

3. MEDIDAS DE EFICIENCIA ENERGÉTICA: **DEFINICIÓN Y CLASIFICACIÓN**

Las mejoras en eficiencia energética que podemos implementar en nuestros edificios pueden dividirse en tres grandes grupos:

Figura 1. 6. Grupos de medidas en eficiencia energética

3.1 Medidas pasivas: mejora del aislamiento y control de la ventilación

Principalmente se refieren a la mejora del nivel de aislamiento del edificio o al control de la ventilación mediante medidas que no supongan el uso de equipos que consuman

En este grupo también se incorpora el control y la gestión de la radiación solar que incide en el edificio.

Las medidas pasivas tienen una directa relación con el cumplimiento del CTE-HE y en el presente manual se han considerado las siguientes tipologías de cara al estudio de su rentabilidad realizado sobre dos viviendas modelo:

Vivienda aislada

VA1	Fachad	a SATE	de 8 cm.
-----	--------	--------	----------

- VA2 Fachada SATE de 10 cm.
- VA3 Aislamiento exterior en cubierta de 10 cm.
- VA4 Aislamiento exterior en cubierta de 12 cm.
- VA5 Aislamiento interior en fachada de 8 cm.
- VA6 Aislamiento interior en cubierta de 10 cm.
- VA7 Fachada ventilada.
- VA8 Ventanas de mayor EE.
- VA9 Ventanas dobles.
- VA10 Protección solar con celosía.

Vivienda en bloque

- VB1 Fachada SATE de 8 cm.
- Fachada SATE de 10 cm. VB2
- VB3 Aislamiento exterior en cubierta de 10 cm.
- VB4 Aislamiento exterior en cubierta de 12 cm.
- VB5 Aislamiento interior en fachada de 8 cm.
- Aislamiento interior en cubierta de 10 cm. VB6
- VB7 Fachada ventilada.
- VB8 Ventanas de mayor EE.
- VB9 Ventanas dobles.
- VB10 Protección solar con celosía.

3.2 Medidas activas: control del rendimiento de los equipos

Comprende todas las medidas que impliquen el empleo de equipos que consuman energía para desempeñar su función.

En el presente manual se han considerado las siguientes tipologías:

Vivienda aislada

VAII Caldera de condensación.

VA12 Caldera de biomasa.

VA13 Aerotermia.

VA14 Solar térmica.

Vivienda en bloque

VB11 Caldera de condensación.

VB12 Caldera de biomasa.

VB13 Aerotermia.

VB14 Solar térmica.

3.3 Uso y gestión de la energía

Se trata del grupo de medidas más difíciles de prever ya que incide el uso que cada propietario haga de las instalaciones de su vivienda, las temperaturas de consigna de calefacción y refrigeración o parámetros tan variables como la ocupación de las estancias.

Una gestión avanzada de este tipo de variables sería la incorporación de equipos de domótica que se encargaran de su regulación de forma automática.

Y no hay que olvidar la obligación, por parte del usuario, de instalar dispositivos para la medición del consumo, con el objetivo de repartir el coste total entre los diferentes inquilinos, de modo que cada uno pague lo que realmente consume.

Las medidas en eficiencia energética aplicables a un edificio pueden dividirse en tres grupos:

- · Medidas pasivas, que no precisan consumo de energía para su funcionamiento.
- Medidas activas, que precisan consumo de energía para realizar su función.
- Medidas de gestión y control, que por lo general dependen del usuario o de sistemas domóticos.

4. ADOPCIÓN DE MEDIDAS DE EFICIENCIA ENERGÉTICA

4.1 ¿Qué necesita mi edificio?

El punto de partida para establecer las medidas en eficiencia energética más convenientes en nuestro edificio es un análisis de sus consumos, bien mediante los datos de facturación o recreando su funcionamiento en modelos informáticos.

En cualquiera de los dos casos debemos establecer cuál de las demandas es predominante (calefacción o refrigeración) y cuál es su procedencia (aislamiento de las fachadas, ventanas, rendimiento de las instalaciones, etc.).

A partir de estos datos nuestra toma de decisiones debe encaminarse a la reducción de los consumos de energía, pero siempre a un coste razonable que pueda ser asumido por el propietario, ya que la sostenibilidad no solo se basa en principios de eficiencia sino también de gestión adecuada de los recursos financieros.

Observemos el siguiente gráfico:

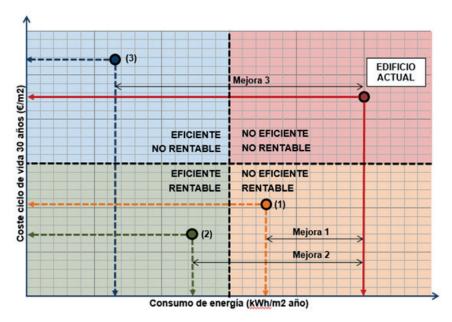


Figura 1. 7. Toma de decisiones en la mejora energética de un edificio

Se trata de un gráfico en el que en el eje horizontal se representa el consumo de energía de un edificio y en el vertical el coste asociado en un período de vida útil de 30 años en los que se sumarán los gastos de facturación de combustible al mantenimiento del edificio.

En el margen superior derecho se marca un punto en rojo que representa un edificio existente ficticio caracterizado por un elevado consumo de energía y por ello con un elevado coste económico en facturación de combustible.

Nuestras propuestas de mejora energética pueden tomar diversos caminos que podemos resumir en tres alternativas:

1. Representado por el punto naranja (1) se sitúa un edificio que mejora levemente su eficiencia energética con un coste de inversión moderado. Podemos decir que se trata de una solución rentable económicamente, pero que seguramente no alcance los

estándares de eficiencia energética que nos marquen las distintas normativas en la materia. Se trata por lo tanto de medidas con baja inversión y resultados moderados que por lo general son aplicadas en edificios existentes.

- 2. Representa el punto verde (2) con una variante de alta eficiencia energética a bajo coste. Se trata de medidas con una inversión baja, pero con resultados eficaces y que sin duda son las más rentables de introducir en nuestro edificio y las que se adoptan como estándar para los edificios de nueva construcción y de este modo poder cumplir con las limitaciones de consumo establecidas en el CTE-HE 2019.
- 3. Ocupa la parte superior izquierda del gráfico el punto de color azul (3) con una alternativa que sin duda es la más eficiente desde el punto de vista energético, pero al mismo tiempo la menos rentable. Corresponde a las medidas con un coste de inversión tan elevado que no compensa introducirlas en nuestro edificio en relación con el beneficio que genera.

En este sencillo gráfico podemos entender en qué se basa la rentabilidad en eficiencia energética: proponer soluciones cuyo coste sea compensado por el beneficio económico que generan.

En nuestra toma de decisiones debemos mejorar la eficiencia energética de nuestro edificio atendiendo al beneficio que genere, eligiendo soluciones de bajo coste y alta repercusión en la disminución del consumo de energía.

- El CTE-HE 2019 es la actual normativa que regula los consumos de energía de nuestros edificios como fruto de transposición de las directivas europeas en la materia.
- En el CTE-HE 2019 se establecen limitaciones de consumo de energía no renovable, demanda de energía, rendimiento de las instalaciones y obligación de incorporación de energías renovables en determinados edificios.
- La escala de certificación energética es un escenario de comparación con un edificio de referencia construido cumpliendo estrictamente el CTE y empleando unos sistemas energéticos predeterminados.
- En el caso de los edificios de viviendas la comparación se realiza frente a una muestra de edificios de su misma zona climática, mientras que en el caso de usos terciarios para la comparación se emplea una copia del mismo edificio con las calidades constructivas del CTE.
- Las medidas en eficiencia energética aplicables a un edificio pueden dividirse en tres
 - Medidas pasivas, que no precisan consumo de energía para su funcionamiento.
 - Medidas activas, que precisan consumo de energía para realizar su función.
 - Medidas de gestión y control, que por lo general dependen del usuario o de sistemas domóticos.
- En nuestra toma de decisiones debemos mejorar la eficiencia energética de nuestro edificio atendiendo al beneficio que genere, eligiendo soluciones de bajo coste y alta repercusión en la disminución del consumo de energía.

UNIDAD 2: PRINCIPIOS BÁSICOS DE LA RENTABILIDAD ECONÓMICA DE LA EFICIENCIA ENERGÉTICA

CONTENIDOS

- 1. Introducción
- 2. Parámetros económicos
- 3. Viabilidad y la rentabilidad de la inversión

Resumen

OBJETIVOS DE LA UNIDAD DIDÁCTICA:

Comprender las variables que condicionan una inversión en eficiencia energética y como se relacionan con el fin de establecer estimaciones de rentabilidad y plazos de amortización.

1. INTRODUCCIÓN

Posiblemente la principal preocupación de un propietario a la hora de realizar una inversión en eficiencia energética es su coste económico. En muchas ocasiones esta visión a corto plazo no deja ver las posibilidades que reducir el consumo energético de nuestro edificio ofrece a futuro, permitiendo no solo recuperar el dinero invertido, sino incluso generar retornos que financien futuras reformas.

En esta unidad se tratarán las variables que condicionan una inversión en eficiencia energética y cómo se relacionan para establecer estimaciones de rentabilidad y plazos de amortización.

Sin olvidar que, no debe tenerse en cuenta toda actuación destinada a mejorar la eficiencia del edificio solo como una inversión económica, que pueda descartarse por no resultar beneficiosa en corto periodo de tiempo. Toda inversión orientada hacia aumentar la eficiencia energética supone también una inversión en sostenibilidad, que afecta no solo al medio ambiente, sino directamente al confort de los usuarios, creando unas condiciones interiores que mejoran la calidad de vida.

Y teniendo en cuenta que existe una oferta de subvenciones públicas, como planes de ayuda y financiación, creadas para minimizar el coste de la inversión inicial, de modo que así el usuario pueda ver su gasto inicial amortizado mucho antes. Sobre estas subvenciones se hablará más adelante.

2. PARÁMETROS ECONÓMICOS

2.1 Comparación de escenarios presente y futuro

Todo estudio financiero compara distintos escenarios, no solo en el presente sino también en su posible desarrollo futuro, para establecer qué inversión es la más conveniente.

En nuestro escenario inicial caracterizamos al edificio en base a su consumo de energía, realizando una previsión del coste económico que supondrá mantenerlo a lo largo de su vida útil.

Para ello sumaremos los costes de mantenimiento del edificio y de combustible a lo largo de su vida útil, que suele fijarse entre 30 y 50 años, para de este modo obtener el coste acumulado a futuro de mantener la actual situación con un edificio de baja eficiencia energética.

En nuestro estudio pondremos los datos obtenidos en comparación con un escenario mejorado donde, gracias a las medidas en eficiencia energética que hayamos contemplado, el edificio partirá de un coste mayor, ya que al inicio tenemos que invertir dinero en las mejoras, pero año tras año la reducción de las facturas energéticas hará que nuestro edificio mejore su balance económico hasta llegar a amortizar el dinero invertido, e incluso generar beneficios respecto al escenario inicial.

Para explicar la comparación de escenarios emplearemos un gráfico de amortizaciones. La línea de color rojo simboliza el coste acumulado año tras año de un edificio sin mejoras energéticas, mientras que la línea verde es su equivalente para un edificio mejorado.

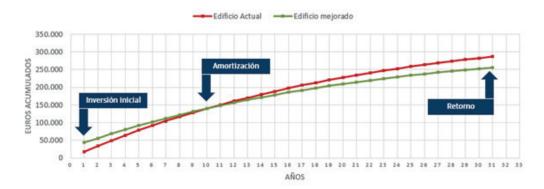


Figura 2.1. Comparación de escenarios en un estudio de rentabilidad

En el eje horizontal se representan los años del ciclo de vida del edificio que se han tenido en cuenta (en este caso hasta un máximo de 30), mientras que en el vertical se representa el coste acumulado de mantener el edificio en euros.

Podemos observar que en el año 1 el coste del edificio mejorado es mayor, ya que incluye las inversiones en eficiencia energética que se hayan realizado. Sin embargo, año tras año, las dos líneas se igualan, ya que el coste de mantenimiento del edificio mejorado es menor.

Llegará un momento, en este caso al año 10, en el que ambas curvas se igualen. Esto quiere decir que en ese punto la inversión inicial realizada se ha amortizado, por lo que el edificio a partir de ese momento generará beneficios a sus propietarios.

2.2 Datos iniciales necesarios

Para realizar los gráficos anteriores debemos estimar cuál será la evolución de consumos y costes energéticos del edificio, es decir, el punto de partida lo forman una serie de condiciones fijadas de antemano que constituyen la base del estudio: si no se llegaran a cumplir, como es lógico, nuestra estimación fallará.

Es por ello que suelen analizarse al menos dos escenarios, uno pesimista y otro optimista, para en cierto modo establecer el abanico de posibilidades que pueden darse.

Entre los factores más relevantes susceptibles de comportarse de forma aleatoria podemos citar:

 El comportamiento de los usuarios del edificio, ya que el consumo de energía depende en gran medida del uso que se realice de las viviendas. Conviene recordar que la certificación energética de los edificios se elabora con temperaturas de calefacción y refrigeración en general alejadas de las condiciones normales de uso de las viviendas. Por ello resulta poco aconsejable emplear sus resultados para la realización de estudios de rentabilidad.

- Comportamiento térmico del edificio. Por muy realista que sea nuestro modelo informático simulando el edificio, lo cierto es que la realidad siempre lo supera, y tan solo una factura de consumo será capaz de indicarnos realmente nuestro gasto energético, entre otros factores porque nuestro punto de partida en las simulaciones informáticas son climas "artificiales" creados como media de lo ocurrido en la zona en los últimos 20 años, cuando en realidad unos años hará más frío y otros más calor, por lo que las facturas irán variando.
- Incremento del precio de los combustibles. Por realistas que intenten ser nuestras estimaciones, este factor está sujeto a elementos geopolíticos que escapan de nuestro control, y en escenarios a 30 años (plazo habitual en simulaciones de rentabilidad energética) es difícil asegurar que nada cambiará.

Con todos los condicionantes señalados (y otros tantos que no se enumeran) podríamos pensar que este tipo de estimaciones se alejan de un análisis meramente serio, y no es así: la metodología funciona, es la incertidumbre sobre los datos de partida lo que realmente dispersa su resultado.

Los datos de partida que resultan fundamentales para realizar el estudio de rentabilidad económica son:

- Ahorro energético anual, como resultado de restar al consumo actual del edificio el que tendría si le implementáramos medidas energéticas.
- Coste de los combustibles empleados en €/kWh de energía, así como las previsiones de evolución de su precio en el período de tiempo estudiado.
- Coste de las medidas de ahorro energético que se implementan en el edificio.
- Tasa interna de retorno que se desea obtener, concepto que desarrollaremos más adelante.
- Gastos de mantenimiento asociados a las nuevas medidas energéticas.

2.3 Ahorro energético

El consumo actual del edificio es fácilmente comprobable a través de sus facturas. Lo que resulta realmente complejo de simular es el ahorro que supone, por ejemplo, aislar las fachadas o cambiar las ventanas.

Para ello se emplean modelos informáticos, más o menos complejos, que simulan el comportamiento térmico del edificio. El procedimiento habitual tras modelizar el edificio en cualquier programa es realizar un ajuste de sus consumos a las facturas reales recopiladas en un período representativo de tiempo, entre 1 y 5 años, de manera que se procure una simulación informática lo más cercana posible a la realidad.

2.4 Estimación del coste del combustible

El coste de combustible es un valor que podemos consultar por diversos medios, pero difícil de armonizar dado que es distinto según la empresa comercializadora, zona geográfica o tipo de contrato.

Para el presente manual se han empleado los datos proporcionados por distintas empresas del sector, así como los recogidos en la página http://enercost.eu/ donde se pueden encontrar precios de suministro de combustibles para toda Europa.

Por otro lado, la evolución de estos precios es nuevamente un factor a determinar si queremos realizar estimaciones a medio o largo plazo (15 a 30 años).

En este caso se han empleado los datos del informe Optimal calculations and comparison with the current and future energy performance requirements of buildings in Spain realizado por el Ministerio de Fomento, para establecer los porcentajes de aumento anual (Up% anual) del precio de los combustibles.

Coste combustible (sin impuestos)	€/kWh	Up % anual	
		10	
Electricidad Peninsular	0,159	7,00	
Electricidad No Peninsular	0,187	9,00	
Gas natural	0,053	5,00	
Gasoleo	0,091	5,00	
Fuel-oil	0,093	5,00	
GLP	0,114	5,00	
Carbón	0,120	5,00	
Pellets	0,050	3,00	
Biomasa (otro tipo)	0,380	2,00	
EERR	0,000	0,00	

Figura 2.2. Costes de los combustibles y porcentajes de evolución anual empleados en el manual

2.5 Estimación del coste de las medidas

Para estimar si una medida energética es o no rentable es imprescindible conocer el coste de la inversión que debemos realizar, incluyendo tanto los gastos directos como indirectos que se le asocien.

En la reforma de una fachada se puede optar por incorporar aislamiento por el exterior, lo que se conoce como sistema SATE.

En este caso el coste de inversión no es solo el del material aislante, sino la suma de todos los costes asociados de andamios, perfiles de remate y arranque, pinturas, morteros y mano de obra necesarios para la correcta ejecución de la obra.

Dada la diversidad de situaciones que pueden concurrir en un edificio resulta complejo establecer de forma genérica el coste de una medida energética, si bien para el presente manual se ha desarrollado un conjunto de precios descompuestos y ratios de inversión, recogidos en el Anexo 1 que pueden resultar interesantes de cara a una estimación inicial de la inversión.

2.6 Actualización de la inversión: valor actual neto

Uniendo todos los elementos anteriores mostraremos a continuación la fórmula que rige nuestro cálculo:

$$VAN = -I_0 + \sum_{t=1}^{n} \frac{Ahorro_t - Gasto_t}{(1+t_r)^t}$$

Figura 2.3. Valor actual neto (VAN). Costes de los combustibles y porcentajes de evolución anual empleados en el manual

El objetivo de esta ecuación es calcular el VAN o valor actual neto, es decir valor actual de una inversión si esta se realizara en el futuro.

Para explicarlo supongamos que nos gastamos 1 euro en un café.

Seguramente esa misma cafetería dentro de 5 años no cobrará la mencionada cantidad, sino, por ejemplo, 1,20 €, es decir, con el paso del tiempo el precio del café aumenta.

Por tanto, el coste actual de "invertir" en un café es de 1 €, sin embargo, dentro de 5 años será de 1,20 €.

De igual manera el precio de los combustibles está sujeto a las variaciones del mercado, y por lo general aumentan su precio cada año, esto implica que para calcular el Ahorrot habrá que multiplicar el Ahorro anual por este incremento de precios. La operación sería:

En la ecuación el término (1+tp)^t se encarga de simular esta situación, siendo tp el porcentaje anual de aumento estimado en el coste y "t" el número del año en el que se realiza la inversión.

Siguiendo con el anterior café si suponemos un 5% de aumento del precio anual, en 3 años costará:

$$1 \in X (1+0.05) \times (1+0.05) \times (1+0.05) = 1 \in X (1+0.05)^3$$

2.7 Tasa de retorno o descuento

La parte inferior de la ecuación inicial, (1+tr)^t, la compone la evolución marcada por la tasa de retorno (tr) que queramos imponer a la inversión.

No olvidemos que estamos invirtiendo nuestro dinero en eficiencia energética, y por lo tanto debemos exigirle una rentabilidad mínima, bien porque el capital es prestado y deberemos asumir el coste de los intereses bancarios o porque podríamos haber decidido invertir en otro producto que nos rentará más (es lo que se denomina coste de oportunidad).

La tasa de retorno anual es otro de los parámetros que debemos fijar. El límite inferior lo fijan los intereses del préstamo, entendido como coste mínimo que debe amortizarse, o el valor de las Letras del Tesoro, entendido como inversión segura a medio largo plazo.

Para inversiones realizadas por capital privado se suele adoptar una tasa interna de retorno del 10%, que es la establecida por el mencionado informe Optimal calculations and comparison with the current and future energy performance requirements of buildings in Spain.

Sigamos con nuestro café de coste actual 1 €.

Bien porque he tenido que pedirlo prestado y deberé devolver el euro más los intereses, o bien porque invertir ese euro en otros asuntos me renta mayor beneficio, deberé exigir a mi inversión que en el plazo de estudio me devuelva más dinero del invertido.

Si suponemos una tasa de retorno de 10%, el resultado en 3 años será:

$$1 \in / (1+0,10) \times (1+0,10) \times (1+0,10) = 1 \in / (1+0,10)^3$$

Un correcto estudio económico se basa en la fiabilidad de los datos de partida, entre los que destaca:

- El ahorro económico generado por la mejora energética.
- El aumento anual previsto del precio de los combustibles.
- La tasa de retorno o descuento.

3. VIABILIDAD Y LA RENTABILIDAD DE LA INVERSIÓN

3.1 Período de amortización de la inversión

El proceso que hasta el momento hemos seguido ha sido el de fijar una serie de parámetros externos (costes de inversión o combustible y tasas de retorno o aumento de precios) para poder comparar la situación de nuestro edificio actual con su comportamiento habiendo mejorado su eficiencia energética.

Para ello hemos desarrollado una formulación que nos arroja año tras año de estudio el resultado del valor actualizado de la inversión o VAN.

Tras el ciclo de vida sometido a estudio, el resultado puede ser de dos tipos:

VAN > 0	Lo que querrá decir que la inversión prevista producirá ganancias por encima de la rentabilidad mínima (o tasa de retorno) que se le ha exigido.
VAN < 0	La inversión no producirá ganancias en el ciclo de vida analizado, es decir, no será rentable al final de ese período de tiempo.

El año de estudio en el que el valor del VAN torna en positivo se conoce como período de amortización, que puede entenderse como el tiempo que transcurrirá para recuperar la inversión inicial junto con la rentabilidad que le hayamos exigido.

3.2 Ahorro generado y retorno económico

En el momento que el valor del VAN es positivo, la inversión pasa a generar beneficios, bien en ahorro energético o como oportunidad para reinvertir en la sustitución de los equipos.

Pongamos un ejemplo más interesante:

Partimos de una vivienda con un consumo de 10.000 kWh/año, en la que se implementa como mejora una caldera de alta eficiencia de coste 2.000 € (que representará la inversión inicial, "lo") y gasto de mantenimiento anual 25 € (Gasto t).

Se estima que la mejora proporcionará una reducción del consumo de energía del 35%= 3.500 kWh/año de ahorro.

El combustible es Gas natural, con un precio estimado para este ejemplo de 0,07 €/kwh y un aumento anual previsto del 5%.

Para el cálculo emplearemos un tipo de interés muy bajo del 3% y un ciclo de vida de 10 años.

Paso 1:

Calculo el ahorro generado anualmente:

3.500 kWh x 0,07 €/kwh= 245 € de ahorro anuales.

Paso 2:

Calculo el VAN para todo el período analizado con la formulación propuesta. Para ello calculo, en cada año, el flujo de caja influido por la tasa de retorno, y después sumo todos los resultados para obtener el VAN:

$$VAN = -I_0 + \sum_{t=1}^{n} \frac{Ahorro_t - Gasto_t}{(1+t_r)^t}$$

Año 0: (estado actual)

Año 0=
$$-I_0$$
 + $\frac{Ahorro_t - Gasto_t}{(1+t_\rho)^t}$ = $-I_0$ + $\frac{(Ahorro\ anual)\ (1+t_\rho)^t - Gasto_t}{(1+t_\rho)^t}$
= -2000 + $\frac{(245)\ (1+0.05)^0 - 0}{(1+0.03)^0}$ = -2000 + 245 = -1755 €

Año 1:

$$A\tilde{n}o = -I_o + \frac{Ahorro_t - Gasto_t}{(1+t_r)^t} = \frac{(Ahorro\ anual)\ (1+t_p)^t - Gasto_t}{(1+t_r)^t} = \frac{(245)\ (1+0,05)^1 - 25}{(1+0,03)^1}$$

Pasado el primer año no hay inversión, sino gastos en mantenimiento y el balance es positivo.

Por lo tanto, el balance total acumulado al finalizar el año 1 será de: -1755 + 232,3= --1522,7. Este cálculo se extenderá al conjunto de los 10 años, sumando todos los valores para obtener el VAN.

En el momento temporal en el que consiga que el balance sea 0, tendré el período de amortización de la inversión, a partir del cual empezaré a acumular beneficio hasta el final del período de estudio (10 años).

Resumiremos en un cuadro los resultados para un período de tiempo de 10 años:

	Año	Ahorro	Gasto	Flujo de caja	VAN	Flujo acumulado
0	2020	245,0	-2000	-1.755,0	-1.755,00	-1.755
1	2021	257,3	-25,0	232,3	225,49	-1.523
2	2022	270,1	-25,0	245,1	231,04	-1.278
3	2023	283,6	-25,0	258,6	236,67	-1.019
4	2024	297,8	-25,0	272,8	242,38	-746
5	2025	312,7	-25,0	287,7	248,16	-459
6	2026	328,3	-25,0	303,3	254,03	-155
7	2027	344,7	-25,0	319,7	259,98	165
8	2028	362,0	-25,0	337,0	266,01	502
9	2029	380,1	-25,0	355,1	272,14	857
					480,90	

Figura 2 4. Ejemplo de amortización para un ciclo de vida de 10 años

Finalmente, el VAN sería los 480,90€ resultantes.

Como vemos la amortización se produciría en el transcurso del séptimo año, y al final del periodo estudiado el balance es positivo, luego la inversión es rentable.

En resumen, año tras año la reducción de los costes energéticos en el edificio amortiza la inversión realizada hasta recuperarla junto a los intereses previstos.

Como esta amortización se consigue antes de los 10 años de estudio, se genera un remanente de ahorro que puede considerarse como beneficio de la inversión.

Es decir, la inversión planteada es rentable.

Parece lógico pensar que, si la reducción del VAN es siempre progresiva, la inversión siempre se recupera, solo es cuestión de tiempo (años) que el valor del VAN se torne positivo.

Aquí es donde entra en juego una estimación razonable del ciclo de vida de las medidas en eficiencia energética que se planteen, entendido como el período de tiempo que pase hasta que deban ser sustituidas o en ellas se realicen reformas importantes.

En el caso de las medidas de tipo pasivo (aislamiento, ventanas, protecciones solares, etc.) se considera en torno a 30 años, mientras que en las medidas activas se reduce a 15 años, como período en el que por lo general los equipos deben ser sustituidos.

Por otro lado, el inversor puede llegar a solicitar plazos de retorno mucho menores, e incluso un mayor interés de retorno en función del plazo de devolución, ya que la incertidumbre y con ello el riesgo de la inversión aumenta con el tiempo.

En general se estima que una amortización en eficiencia energética a corto plazo es la que no supera los 10 años, medio plazo hasta los 20 años y largo plazo 30 hasta los años.

Si el período de retorno supera los 30 años o 15 en el caso de instalaciones, se entiende que la medida no cubre los costes de inversión, y por lo tanto no es rentable.

Una inversión rentable es la que consigue amortizar la inversión realizada y la rentabilidad que se le exige en el período de tiempo indicado, generalmente 30 años para medidas de tipo pasivo.

Que una medida energética no sea rentable económicamente no quiere decir que tengamos que eliminarla de nuestra lista de opciones, ya que pueden entrar en juego otros factores:

- 1. Cumplimiento normativo. Es decir, que a pesar de no ser rentable la normativa nos exija la mejora energética de nuestro edificio y por tanto la inversión deba realizarse.
- 2. Subvenciones. Es habitual entre las medidas de mayor eficiencia energética que opten a subvenciones, variables según la comunidad autónoma, que mitigan en parte los costes iniciales de inversión, disminuyendo por tanto el período de retorno y haciendo viable la operación.
- 3. Factores estratégicos. Entendidos como un aumento de la calidad del edificio que permita a sus inquilinos mejorar su nivel de vida o a sus propietarios vender con mayor facilidad el inmueble.

Resumen

- · Un correcto estudio económico se basa en la fiabilidad de los datos de partida, entre los que destaca:
 - El ahorro económico generado por la mejora energética.
 - El aumento anual previsto del precio de los combustibles.
 - La tasa de retorno o descuento.
- Una inversión rentable es la que consigue amortizar la inversión realizada y la rentabilidad que se le exige en el período de tiempo indicado, generalmente 30 años para medidas de tipo pasivo.

UNIDAD 3: BUENAS PRÁCTICAS PARA LA MEJORA DE LA RENTABILIDAD ECONÓMICA DE LA EFICIENCIA ENERGÉTICA

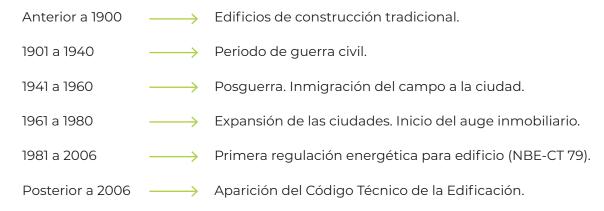
CONTENIDOS

- 1. Introducción
- 2. Estudio de rentabilidad sobre un edificio tipo

OBJETIVOS DE LA UNIDAD DIDÁCTICA:

· Comprender las bases del cálculo empleadas en el estudio de rentabilidad de diversas mejoras energéticas sobre un mismo edificio..

1. INTRODUCCIÓN


En esta unidad se pasarán a describir las bases del cálculo empleadas en el estudio de rentabilidad de diversas mejoras energéticas sobre un mismo edificio "modelo" para 4 localidades peninsulares como muestra de la variedad climatológica de nuestro país.

Los resultados aparecen en fichas a doble página que resumen las características principales de cada medida de mejora y permiten al alumno estimar cuál de ellas es la más conveniente en cada caso.

2. ESTUDIO DE RENTABILIDAD SOBRE UN EDIFICIO TIPO

2.1 Edificio modelo

Para realizar el estudio económico se toma un edificio estadísticamente representativo de nuestro parque inmobiliario. Para ello se han tenido en cuenta los períodos históricos establecidos en el procedimiento de certificación energética para edificios existentes:

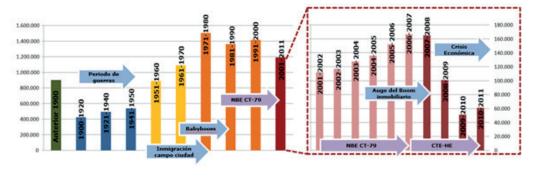


Figura 3.1. Distribución del parque de viviendas existentes en 2010. Elaboración propia a partir de los datos del "Censo de población y vivienda" del INE y de los datos de visados de proyectos del CSCAE

Tras el análisis de la estadística y períodos constructivos, representados en la imagen superior, se opta por un edificio del período 1961 a 1980, por corresponder al de mayor auge de expansión inmobiliaria y al mismo tiempo ser anterior a la regulación energética en edificación (NBE-CT-79), lo que le convierte en un excelente modelo para realizar mejoras en los consumos de energía.

Seleccionado el periodo histórico, se emplea la geometría de bloque de viviendas en H extraído de los test de calibración de programas alternativos a LIDER y CALENER, que

equivale al modelo Isolated blok del informe Report on cost optimal calculations and comparison with the current and future energy performance requirements of buildings in Spain.

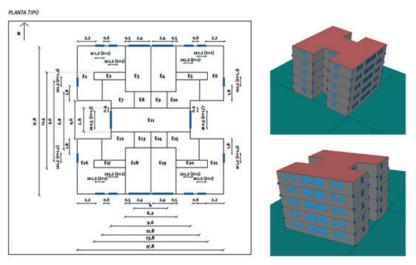


Figura 3.2. Geometría y volúmenes del edificio modelo empleado en los cálculos

2.2 Calidades constructivas

Se selecciona una calidad constructiva correspondiente al considerado como 2° período de expansión inmobiliaria de nuestro país entre los años 1961 y 1980, y por lo tanto anterior a la primera normalización en materia de aislamiento térmico en edificios (NBE_CT-79), lo que implica fachadas de doble hoja con cámara de aire no ventilada de entre 2 y 5 cm y trasdosado interior de ladrillo hueco sencillo, con una transmitancia térmica del conjunto U=1,20 W/m²K.

Para las cubiertas se adopta un sistema con cámara horizontal ventilada de 10cm generada sobre tabiques palomeros de baja altura y superficie transitable de baldosa cerámica, con una transmitancia térmica del conjunto U=1,48 W/m²K.

Las ventanas se suponen de cerrajería metálica simple, sin rotura de puente térmico, y vidrios monolíticos.

2.3 Zonas climáticas y metodología de cálculo

A la hora de establecer mejoras energéticas en un edificio, parece lógico pensar que no es lo mismo enfrentarse a un clima cálido que a inviernos fríos, es decir, cada edificio precisa distintas inversiones en función de la localidad en la que se encuentre.

Por ello el edificio modelo ha sido sometido a estudio en 4 ciudades representativas de la climatología peninsular:

- · Sevilla, como ejemplo de clima severo de verano con inviernos suaves (zona climática B4).
- Barcelona, representativa del clima mediterráneo de clima templado (zona climática C2).
- Madrid, clima continental extremo en verano e invierno (zona climática D3).
- Burgos, localidad de inviernos extremos y veranos suaves (zona climática El).

2.4 Estudio de mejoras

Para el estudio se han empleado simulaciones informáticas en las que se comparaba la demanda energética del edificio modelo con la generada por el mismo edificio mejorado en alguno de los puntos del apartado 3 de la unidad didáctica 1 del presente manual.

El modelo de simulación base se realizará mediante la herramienta unificada LIDER-CALENER (HULC), por tratarse de un procedimiento reconocido por el Ministerio de Industria y el Ministerio de Fomento, mientras que los estudios de mejoras se realizan mediante la UNE-EN 13790:2011 (actualmente anulada por UNE-EN ISO 52016) método cuasi estacional de cálculo.

Los factores de conversión de energía y emisiones de CO2, así como las condiciones de cálculo son las establecidas por el Ministerio de Fomento para la certificación de edificios a partir de 2016.

Para el uso de la norma UNE 13790 se ha generado una herramienta informática propia a la que se ha sometido a un test de comparación y calibración respecto al programa HULC, dando como resultado desviaciones medias inferiores al 10% en el caso de Sevilla y al 5% en el resto de las localidades. (Ver resultados de calibración en el anexo 2 del manual).

2.5 Lectura de las fichas de resultados

La presentación de los resultados se realiza mediante fichas a doble página que resumen las características principales de cada medida de mejora.

En la parte izquierda se definen las características constructivas, normativa de aplicación y pautas de intervención en edificios existentes de cada propuesta, mientras que la parte derecha se ofrecen los resultados del estudio económico realizado con la metodología y herramientas expuestas a lo largo del manual.

En primer lugar, los dos gráficos superiores comparan los resultados, a la izquierda, globales y, a la derecha, por vector energético (calefacción, refrigeración y ACS) entre el edificio adoptado como modelo y su réplica mejorada gracias a la intervención propuesta.

Posteriormente se establece un coste de inversión inicial y una vida útil estimada de la medida, datos con los que se calculan:

- Ahorro anual, estimado en % sobre el consumo total del edificio modelo.
- Período de amortización, con un máximo de tiempo de estudio de 60 años.
- Retorno de inversión tras la vida útil de la mejora (30 años para medidas pasivas y 15 para activas).

Por último, cada ficha ofrece una valoración a modo de "estrellas" de puntación que establece si la inversión es interesante, aconsejable, rentable o muy rentable en cada una de las localidades de referencia (Sevilla, Barcelona, Madrid y Burgos), así como una serie de comentarios finales sobre los resultados obtenidos.

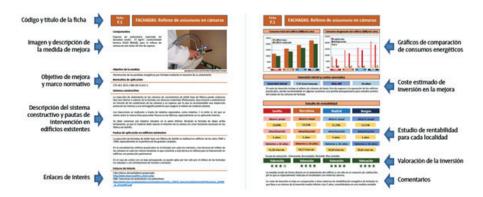


Figura 2. Resumen de la información recogida en cada ficha de mejora energética

Se completa la información del manual con dos fichas resumen de resultados (Fichas RS.1 y RS.2), en las que se comparan todas las medidas sometidas a estudios en función del ahorro energético que generan, la reducción de emisiones de CO2, coste de la inversión inicial y período estimado de amortización.

Para realizar un estudio de rentabilidad sobre un edificio tipo habrá que:

- Tomar un edificio estadísticamente representativo de nuestro parque inmobiliario.
 Escogiendo para ello dentro de los períodos históricos establecidos en el procedimiento de certificación energética para edificios existentes.
- Seleccionar una calidad constructiva, correspondiente al periodo de tiempo considerado en el que fue construido el edificio.
- Escoger la zona climática en la que se encontrará el edificio a estudiar, ya que las medidas de mejora de la eficiencia energética dependerán de ello.
- Emplear simulaciones informáticas para comparar la demanda energética del edificio modelo con la generada por el mismo edificio tras haber sido mejorado.
- Presentar los resultados mediante fichas que resuman la información, y permitan comparar el efecto de las diferentes medidas que se pueden adoptar.

ANEXO 1. **COSTES DE INVERSIÓN DE LAS MEDIDAS SOMETIDAS A ESTUDIO**

Para cada una de las medidas de mejora se ha realizado un precio descompuesto como suma de las partidas que se estiman intervendrán en su implantación, si bien tienen que ser entendidos como estimaciones que deben ser adaptadas a la casuística de cada edificio y sus condiciones particulares de ejecución, sobre todo en el apartado de medios auxiliares y obras complementarias.

En el caso de instalación de equipos como sistemas de ventilación, suelo radiante o paneles solares, se han empleado ratios aportados por distintos fabricantes e instaladores.

A continuación, se muestra un cuadro resumen por elementos, si bien la documentación completa es descargable desde el enlace:

Escanea el código QR o accede en el siguiente enlace:

https://www.campusfundacion.org

Introduce las claves: Usuario: rentabilidad2020 Contraseña: rentabilidad2020

Ficha	Descripción	Tipo de precio	Costes	Unidad
F.1	Fachadas. Inyección cámara 2 cm PUR	Descompuesto	8,44	€/m² fachada
F.2	Fachadas. Trasdosado PYL 4 cm MW	Descompuesto	39,52	€/m² fachada
F.3	Fachadas. SATE 5 cm	Descompuesto	56,93	€/m² fachada
F.4	Fachadas. SATE 10 cm	Descompuesto	66,26	€/m² fachada
C.1	Cubiertas. Aislamiento 5 cm XPS	Descompuesto	46,73	€/m² cubierta
C.2	Cubiertas. Aislamiento 8 cm XPS	Descompuesto	50,72	€/m² cubierta
C.3	Cubiertas. Trasdosado 5 cm MW	Descompuesto	33,07	€/m² cubierta
S.1	Suelos. 3 cm XPS	Descompuesto	53,98	€/m² suelo sobre terreno
Н.1	Ventanas. Doble ventana	Descompuesto	191,40	€/m² ventana
H.2	Ventanas. Metálica RPT + vidrio doble	Descompuesto	412,51	€/m² ventana
H.3	Ventanas. PVC + vidrio bajo emisivo	Descompuesto	445,82	€/m² ventana

Ficha	Descripción	Tipo de precio	Costes	Unidad
P.1	Protección solar. Toldos	Descompuesto	364,32	€/Ud toldo 2 m
V.1	Ventilación. Ventanas clase 3	Ratio estimado	6,81	€/ml perímetro ventana
V.2	Ventilación. Autorregulable	Ratio estimado	10,10	€/m² útil de vivienda
V.3	Ventilación. Higrorregulable	Ratio estimado	13,13	€/m² útil de vivienda
1.1	Climatización. Caldera condensación	Descompuesto	1482,51	€/vivienda
1.2	Climatización. Refrigeración ERR 4	Descompuesto	3701,50	€/vivienda
1.3	Climatización. Suelo Radiante	Ratio estimado	104,08	€/m² útil de vivienda
R.1	EERR. Solar ACS 50%	Ratio estimado	585,00	€/m² captador solar
R.2	EERR. Central Biomasa	Ratio estimado	78.271,84	€/ud edificio
G.1	Gestión. Adecuación Tª consigna	Descompuesto	50,00	€/vivienda
G.2	Gestión. Ventilación nocturna		0,00	

ANEXO 2. CALIBRACIÓN DE LA HERRAMIENTA DE CÁLCULO

Para el empleo de la herramienta informática basada en la UNE-EN 13790 (en la actualidad anulada por UNE-EN ISO 52016) se ha realizado una comparación de resultados entre la misma y el procedimiento reconocido por el Ministerio de Industria LIDER-CALENER (HULC), analizando los resultados de demanda de calefacción y refrigeración para el edificio modelo en 5 casos distintos con diferentes configuraciones de aislamientos en la envolvente, que llevaban de una transmitancia media de 0,47 a 1,44 W/m2K.

Para establecer la validez de los resultados se emplean los criterios de la EN 15265, alcanzando como mínimo un nivel de precisión C en el cálculo de las demandas de calefacción y refrigeración, representando cada una de las letras obtenidas las siguientes variaciones de cálculo:

A. variación entre el 0 y el 5%

B. variación entre el 5 y 10%

C. variación entre el 10 y 15%

Los resultados obtenidos son los siguientes.

Calefacción			Umedia	a 0,47			Umedia	a 0,61			Umedia	0,69	
		UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion
Burgos	E1	89,14	88,3	0,95%	A	90,90	88,5	2,70%	A	99,57	98,8	0,78%	A
Madrid	D3	67,16	67	0,21%	A	68,54	68,5	0,06%	A	75,17	75,6	0,52%	A
Barcelona	C2	45,83	45,3	1,10%	A	47,42	48,5	2,13%	A	52,44	51,7	1,37%	A
Sevilla	B4	20,35	24,8	11,68%	С	21,84	27,1	13,08%	С	24,95	29,1	9,73%	В
			Umedia	a 0,88			Umedia	a 1,44		Media			
		UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion				
Burgos	E1	108,58	107,7	0,82%	A	133,02	129,2	2,95%	A	1,64%	Α		
Madrid	D3	82,20	82,2	0,00%	A	101,24	101,1	0,12%	A	0,18%	Α		
Barcelona	C2	58,40	57,1	2,18%	Α	74,97	73,1	2,48%	A	1,85%	Α	1	
Sevilla	B4	29,06	32,8	8,03%	В	40,07	43,7	6,27%	В	9,76%	В		
Refrigeración			Umedia	a 0,47			Umedia	a 0,61			Umedia	0,69	
		UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion
Burgos	E1	0,00	0,2	0,23%	A	0,00	0,1	0,11%	A	0,00	0,2	0,20%	A
Madrid	D3	7,97	7,8	0,23%	A	8,71	7,7	1,33%	A	9,10	7,9	1,44%	A
Barcelona	C2	3,87	2,5	2,87%	A	4,31	2,3	3,96%	A	4,53	2,5	3,75%	A
Sevilla	B4	15,17	13,3	4,91%	Α	15,93	13,1	7,05%	В	16,44	13,5	6,91%	В
			Umedia	0,88			Umedia	a 1,44					
		UNE	HULC	Desvia	cion	UNE	HULC	Desvia	cion				
Burgos	E1	0,00	0,1	0,09%	Α	0,00	0,1	0,08%	Α	0,14%	A	-	
Madrid	D3	11,36	8	3,73%	A	14,20	8,2	5,49%	A	2,44%	A		
Barcelona	C2	5,19	2,5	4,51%	A	8,62	2,4	8,23%	A	4,66%	A		
Sevilla	B4	17,63	13,7	8,45%	В	21,01	14,2	11,75%	С	7,81%	В		

Las desviaciones obtenidas en ningún caso sobrepasan el 15% y el promedio en general obtiene resultados de clase A según lo establecido en la EN 15265, por lo que se considera la herramienta de cálculo creada sobre los procedimientos de la UNE 13790 lo suficientemente fiable como para poder realizar los estudios de rentabilidad ofrecidos en el presente manual

CUADRO RESUMEN. Comparativa de medidas

A partir de dos edificios base ubicados en Madrid, cuya construcción es anterior a 1970, y en los cuales tanto la envolvente como los sistemas de climatización presentan ciertos problemas, o se encuentran por debajo de los rendimientos deseables, se plantean una serie de medidas que buscan la eficiencia energética.

Con el fin de comparar como afectan las diferentes medidas se emplearán unas gráficas, que muestran como las medidas más rentables se hallan en la parte baja y hacia la izquierda, por suponer un consumo anual y una inversión más reducidas, mientras que las medidas menos rentables se encuentran en la parte alta y hacia la derecha, ya que implican mayor consumo e inversión.

Los casos tipo propuestos para su estudio son los siguientes:

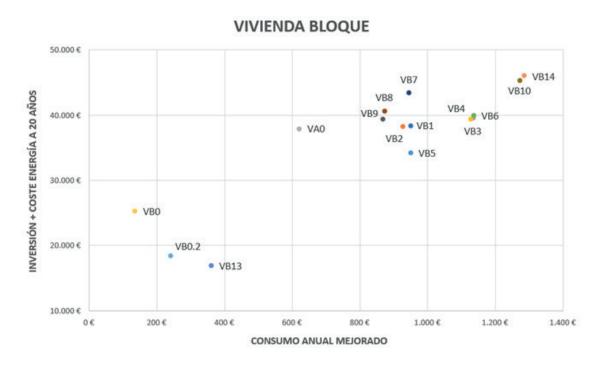
VIVIENDA AISLADA

Vivienda unifamiliar aislada ubicada en el municipio de Madrid (zona climática D3), y con una superficie de 121,0 m2.

En primer lugar, hay que señalar que la mejor actuación consiste en una combinación de varias medidas que se ajusten a las necesidades concretas del edificio y fortalezcan sus puntos débiles, por ese motivo la propuesta más rentable en este caso consiste en una mejora de la envolvente térmica y de los sistemas. A pesar de ello, con la intención de mostrar cómo afectan, se han estudiado y analizado también los impactos que tendrían por separado las diversas medidas de mejora.

Se observa así que los ahorros energéticos superiores se concentran en las medidas que confieren mayor aislamiento a la cubierta del edificio, por ser la que más superficie de envolvente ocupa con un coste menor de inversión para poner en práctica la medida.

Las actuaciones en fachada, tanto SATE como fachada ventilada, a pesar de suponer un ahorro energético considerable tienen un coste elevado que implica un periodo de amortización superior.


El bajo porcentaje que ocupan los huecos y el mayor coste de la sustitución de ventanas hacen que (en esta situación concreta) resulten unas medidas poco ventajosas, de igual modo que ocurre con el sistema de protección solar, que tiene una escasa repercusión en este caso.

En cuando a las medidas activas, la iniciativa con mayor ahorro sería la instalación de un sistema de aerotermia, que dada su enorme eficiencia implica una rápida amortización, similar a lo que ocurre con la caldera de condensación, cuya inversión también resulta ventajosa. Al contrario de lo que sucede con la caldera de biomasa que, dado el coste de su inversión junto con el gasto necesario de mantenimiento, hace que no resulte rentable para una única vivienda.

Finalmente, la captación solar térmica generaría un bajo ahorro energético, que sumado a su coste hace que no se amortice rápidamente.

VIVIENDA EN BLOQUE

Vivienda unifamiliar en bloque ubicada en el municipio de Madrid (zona climática D3), y con una superficie de 58,4 m2.

Al igual que antes, hay que señalar que la mejor actuación consiste en una combinación de varias medidas que se ajusten a las necesidades concretas del edificio y fortalezcan sus puntos débiles, por ese motivo la propuesta más rentable sigue siendo una mejora de la envolvente térmica y de los sistemas. Con la diferencia, en este caso, de plantear una variante en la cual no se mejoran las ventanas dentro de la reforma integral, ya que no resulta tan efectiva. Y de nuevo se han estudiado y analizado también los impactos que tendrían por separado las diversas medidas de mejora.

Se observa así que los ahorros energéticos superiores se concentran en las medidas que confieren mayor aislamiento a la fachada del edificio, por ser, a diferencia del caso anterior, la que más superficie de envolvente ocupa con un coste menor de inversión para poner en práctica la medida. De igual modo ocurre con la fachada ventilada.

Las actuaciones de mejora del aislamiento en cubierta, a pesar de suponer un ahorro energético menor que en fachada, se amortizan mucho más rápido al tener un coste más reducido, lo que representa un factor interesante para tener en cuenta.

El alto porcentaje que ocupan los huecos hace que la sustitución de ventanas consiga un gran ahorro, pero el elevado coste de estas aumenta el tiempo de amortización. Por otro lado, se observa que los sistemas de protección solar tienen una escasa repercusión en este caso, debido a la orientación de los huecos, por lo que sería una medida poco aconsejable.

En cuando a las medidas activas, la iniciativa con mayor ahorro sería la instalación de un sistema de aerotermia, que dada su enorme eficiencia implica una rápida amortización, similar a lo que ocurre con la caldera de condensación, cuya inversión también resulta ventajosa. Al contrario de lo que sucede con la caldera de biomasa, donde el coste de la inversión sumado al gasto necesario de mantenimiento hace que no resulte rentable para una única vivienda, pero al tratarse de una vivienda en bloque esto cambiaría si la caldera diera servicio a todo el bloque (compartiendo gastos de inversión y mantenimiento).

Finalmente, la captación solar térmica generaría un bajo ahorro energético, que sumado a su coste hace que no se amortice rápidamente.

SUBVENCIONES Y AYUDAS

En contra de lo que pueda parecer, ya que algunas medidas de mejora tienen periodos de amortización demasiado largos, la inversión en eficiencia energética siempre debe considerarse como una actuación favorable que supone un gran avance en sostenibilidad. Por ese motivo, existe una oferta de subvenciones públicas, como planes de ayuda y financiación, diseñados para disminuir el coste de la inversión inicial, acortando el periodo de amortización y resultando más rentable. Entre estos planes y ayudas podemos encontrar:

- Programa PREE. Rehabilitación Energética de Edificios, del Fondo Europeo de Desarrollo Regional (FEDER), que pretende dar impulso a la sostenibilidad mediante la rehabilitación energética, fomentando acciones que van desde la mejora de la envolvente térmica del edificio a la sustitución de instalaciones de generación que emplean combustibles fósiles, en favor de otras que se basan en fuentes de energías renovables. A través de esta rehabilitación se conseguirá la disminución del consumo de energía final y de las emisiones de CO2. Esta iniciativa va destinada a:
 - Propietarios de edificios o locales
 - Empresas de servicios energéticos.
 - Administraciones o comunidades de propietarios.
 - Entidades locales y sector público.
 - Empresas explotadoras, arrendatarias o concesionarias.
 - Comunidades energéticas renovables y comunidades ciudadanas de energía.

Programa de fomento de la mejora de la eficiencia energética y la sostenibilidad en viviendas, Plan Estatal de Vivienda 2018-2021, que busca regular las ayudas para obras de mejora de la eficiencia energética y la sostenibilidad de viviendas unifamiliares y edificios de tipología residencia colectiva. Y que va destinado a:

Las comunidades de propietarios, o las agrupaciones de comunidades de propietarios.

- Las sociedades cooperativas.
- Los propietarios que, de forma agrupada, sean propietarios de edificios.
- Las empresas constructoras, arrendatarias o concesionarias de los edificios, así como cooperativas que acrediten dicha condición.
- Empresas de servicios energéticos.

Varias medidas (Vivienda aislada)

Definición de la medida_ SATE, aislamiento en cubierta, ventanas de EE y aerotermia

El coste de esta inversión incluye: sistema SATE con 80 mm de lana de roca, aislamiento exterior en cubierta de 100 mm de XPS, ventanas de PVC con doble acristalamiento de baja emisividad térmica y un sistema de aerotermia con un SCOP de 5,63 y un SEER de 4,41, junto con todos los trabajos y medios auxiliares requeridos.

ELEMENTO CONSTRUCTIVO	COSTE TOTAL
Fachada, cubierta, ventanas y sistema aerotérmico	16.448,15€

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	28,00
Refrigeración	22,27	0,00
ACS	24,82	24,82
Total	490,52	52,80
TOTAL VIVIENDA (kWh/año)	59.352,92	6.388,80
COSTE ANUAL	5.757,23 €	619,71 €
REDUCCIÓN CONSUMO	5.137,52 €	89,24 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO
Calefacción	332,19	157,50
Calefacción Refrigeración	332,19 36,44	157,50 0,00
Calefacción Refrigeración ACS	332,19 36,44 17,77	157,50 0,00 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	157,50 0,00 17,77 175,27

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
5.137,52 €	4 años	20 años

Fachada SATE 8 cm (Vivienda aislada)

Definición de la medida_SATE

El coste de esta inversión incluye las acciones previas de tratamiento del soporte, así como: estructura de soporte, mortero de fijación, panel de lana de roca de 80 mm, tacos para fijación, malla de fibra, mortero de acabado y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,45 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	115,61	73,00 €	8.439,53 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	377,90
Refrigeración	22,27	24,90
ACS	24,82	24,82
Total	490,52	427,62
TOTAL VIVIENDA (kWh/año)	59.352,92	51.742,02

COSTE ANUAL	5.757,23 €	5.018,98 €	
REDUCCIÓN CONSUMO	738,25 €	12,8 %	

DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	283,10
Refrigeración	36,44	40,80
ACS	17,77	17,77
Total	386,40	341,67
TOTAL VIVIENDA (kWh/año)	46.754,4	41.342,07
		- I
COSTE ANUAL	4.535,17 €	4.010,18 €

524,99 €

11,6 %

Estudio de rentabilidad

REDUCCIÓN DEMANDA

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
738,25 €	12 años	30 años

Fachada SATE 8 cm (Vivienda aislada)

Definición de la medida_ SATE

El coste de esta inversión incluye las acciones previas de tratamiento del soporte, así como: estructura de soporte, mortero de fijación, panel de lana de roca de 100 mm, tacos para fijación, malla de fibra, mortero de acabado y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,36 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	115,61	83,16 €	9.614,13 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	373,10
Refrigeración	22,27	25,10
ACS	24,82	24,82
Total	490,52	423,02
TOTAL VIVIENDA (kWh/año)	59.352,92	51.185,42
COSTE ANUAL	5.757,23 €	4.964,99 €
REDUCCIÓN CONSUMO	792,24 €	13,8 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	279,50
Refrigeración	36,44	41,10
ACS	17,77	17,77
Total	386,40	338,37
TOTAL VIVIENDA (kWh/año)	46.754,4	40.942,77

Estudio de rentabilidad

REDUCCIÓN DEMANDA

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
792,24 €	13 años	30 años

563,72 €

12,4 %

Aislamiento exterior Cubierta 10 cm (Vivienda aislada)

Definición de la medida_ Aislamiento exterior en cubierta

El coste de esta inversión incluye: dos paneles rígidos de 40 y 60 mm de aislamiento (XPS) junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,34 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	121	9,52 €	1.151,92 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 443,43 278,10 Refrigeración 22,27 0 ACS 24,82 24,82 Total 490,52 302,92 TOTAL VIVIENDA (kWh/año) 59.352,92 36.653,32 COSTE ANUAL 5.757,23 € 3.555,37 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77 Total 386,40 226,07			
Refrigeración 22,27 0 ACS 24,82 24,82 Total 490,52 302,92 TOTAL VIVIENDA (kWh/año) 59,352,92 36,653,32 COSTE ANUAL 5.757,23 € 3.555,37 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
ACS 24,82 24,82 302,92 TOTAL VIVIENDA (kWh/año) 59.352,92 36.653,32 COSTE ANUAL 5.757,23 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS	Calefacción	443,43	278,10
Total 490,52 302,92 TOTAL VIVIENDA (kWh/año) 59,352,92 36,653,32 COSTE ANUAL 5.757,23 € 3.555,37 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	Refrigeración	22,27	0
TOTAL VIVIENDA (kWh/año) 59.352,92 36.653,32 COSTE ANUAL 5.757,23 € 3.555,37 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	ACS	24,82	24,82
COSTE ANUAL 5.757,23 € 3.555,37 € REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	Total	490,52	302,92
REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	TOTAL VIVIENDA (kWh/año)	59.352,92	36.653,32
REDUCCIÓN CONSUMO 2.201,86 € 38,2 % DEMANDA DE ENERGÍA (KWH/M².AÑO) EDIFICIO BASE EDIFICIO MEJORADO Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77		_	
DEMANDA DE ENERGÍA (KWH/M².AÑO)EDIFICIO BASEEDIFICIO MEJORADOCalefacción332,19208,30Refrigeración36,440ACS17,7717,77	COSTE ANUAL	5.757,23 €	3.555,37 €
Calefacción 332,19 208,30 Refrigeración 36,44 0 ACS 17,77 17,77	REDUCCIÓN CONSUMO	2.201,86 €	38,2 %
Refrigeración 36,44 0 ACS 17,77 17,77	DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
ACS 17,77 17,77	Calefacción	332,19	208,30
	Refrigeración	36,44	0
Total 386,40 226,07	ACS	17,77	17,77
	Total	386,40	226,07

COSTE ANUAL	4.535,17 €	2.653,38 €
REDUCCIÓN DEMANDA	1.881,79 €	41,5 %

46.754,4

27.354,47

Estudio de rentabilidad

TOTAL VIVIENDA (kWh/año)

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
2.201,86 €	2 años	30 años

Aislamiento exterior Cubierta 12 cm (Vivienda aislada)

Definición de la medida_ Aislamiento exterior en cubierta

El coste de esta inversión incluye: dos paneles rígidos de 50 y 70 mm de aislamiento (XPS) junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,28 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	121	11,03 €	1.334,63 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	274,80
Refrigeración	22,27	0
ACS	24,82	24,82
Total	490,52	299,62
TOTAL VIVIENDA (kWh/año)	59.352,92	36.254,02
COSTE ANUAL	5.757,23 €	3.516.64 €
REDUCCIÓN CONSUMO	2.240,59 €	38,9 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	205,80
Refrigeración	36,44	0
ACS	17,77	17,77
Total	386,40	223,57
TOTAL VIVIENDA (kWh/año)	46.754,4	27.051,97
COSTE ANUAL	4.535,17 €	2.624,04 €
	1.911,13 €	

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
2.240,59 €	1 año	30 años

Aislamiento interior Fachada 8 cm (Vivienda aislada)

Definición de la medida_ Aislamiento exterior en cubierta

El coste de esta inversión incluye: 80 mm de panel rígido XPS, fijación mecánica y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,45 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	115,61	17,60 €	2.034,74 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	377,20
Refrigeración	22,27	24,90
ACS	24,82	24,82
Total	490,52	427,62
TOTAL VIVIENDA (kWh/año)	59.352,92	51.742,02
COSTE ANUAL	5.757,23 €	5.018,98 €
REDUCCIÓN CONSUMO	738,25 €	12,8 %
DEMANDA DE ENEDÇÍA (VIAILI/M2 AÑO)	EDIEICIO BASE	EDIEICIO METODADO
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	283,10
Calefacción	332,19	283,10
Calefacción Refrigeración	332,19 36,44	283,10 40,80
Calefacción Refrigeración ACS	332,19 36,44 17,77	283,10 40,80 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	283,10 40,80 17,77 341,67
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	283,10 40,80 17,77 341,67
Calefacción Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	332,19 36,44 17,77 386,40 46.754,4	283,10 40,80 17,77 341,67 41.342,07

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
738,25 €	3 años	30 años

Nota: para el cálculo no se han tenido en cuenta los puentes térmicos debidos a colocar el aislamiento por el interior.

Aislamiento interior Cubierta 10 cm (Vivienda aislada)

Definición de la medida_ Aislamiento interior en cubierta

El coste de esta inversión incluye: 100 mm de panel rígido de lana de roca, fijación mecánica y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,35 $(W/m^2.K)$

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	121	18,77 €	2.271,17 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	278,70
Refrigeración	22,27	0
ACS	24,82	24,82
Total	490,52	303,52
TOTAL VIVIENDA (kWh/año)	59.352,92	36.725,92
		ı
COSTE ANUAL	5.757,23 €	3.562,41 €
REDUCCIÓN CONSUMO	2.194,82 €	38,1 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO 208,80
Calefacción	332,19	208,80
Calefacción Refrigeración	332,19 36,44	208,80 0
Calefacción Refrigeración ACS	332,19 36,44 17,77	208,80 0 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	208,80 0 17,77 226,57

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
2.194,82 €	2 años	30 años

Nota: para el cálculo no se han tenido en cuenta los puentes térmicos debidos a colocar el aislamiento por el interior.

Fachada ventilada (Vivienda aislada)

Definición de la medida_ Fachada ventilada

El coste de esta inversión incluye: 80 mm de panel de lana mineral, fijación metálica, cinta autoadhesiva, placa laminada compacta de alta presión (HPL), subestructura soporte, junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,44 (W/m².K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	115,61	143,24 €	16.559,98 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	377,20
Refrigeración	22,27	25,00
ACS	24,82	24,82
Total	490,52	427,04
TOTAL VIVIENDA (kWh/año)	59.352,92	51.671,84
COSTE ANUAL	5.757,23 €	5.012,17 €
REDUCCIÓN CONSUMO	745,06 €	12,9 %
DEMANDA DE ENERGÍA (KWH/M²,AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE	EDIFICIO MEJORADO 282.60
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción Refrigeración	EDIFICIO BASE 332,19 36,44	EDIFICIO MEJORADO 282,60 40,90
Calefacción	332,19	282,60
Calefacción Refrigeración	332,19 36,44	282,60 40,90
Calefacción Refrigeración ACS	332,19 36,44 17,77	282,60 40,90 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	282,60 40,90 17,77 341,27
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	282,60 40,90 17,77 341,27

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
745,06 €	23 años	50 años

Nota: para el cálculo no se han tenido en cuenta los puentes térmicos debidos a colocar el aislamiento por el interior.

Ventanas de mayor EE (Vivienda aislada)

Definición de la medida_ Ventanas de mayor eficiencia energética

El coste de esta inversión incluye: carpintería de PVC, doble acristalamiento templado de baja emisividad térmica 4/10/6 con cámara de aire, selladores, así como todos aquellos trabajos y medios auxiliares necesarios para su colocación. Con una transmitancia térmica total de 1,65 (W/m2.K) y un factor solar del 70%.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	7,59	312,74 €	2.373,70 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	441,20
Refrigeración	22,27	19,60
ACS	24,82	24,82
Total	490,52	485,62
TOTAL VIVIENDA (kWh/año)	59.352,92	58.760,02
COSTE ANUAL	5.757,23 €	5.699,72 €
REDUCCIÓN CONSUMO	57,51 €	1,0 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO 330,50
Calefacción	332,19	330,50
Calefacción Refrigeración	332,19 36,44	330,50 32,00
Calefacción Refrigeración ACS	332,19 36,44 17,77	330,50 32,00 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	330,50 32,00 17,77 380,27

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
57,51 €	42 años	50 años

Nota: Aunque invertir en ventanas de alta eficiencia energética pueda tener un coste elevado con una amortización tardía, hay que tener en cuenta que supone un gran avance en sostenibilidad, ahorro energético y que existen subvenciones por parte del Estado.

Ventanas dobles (Vivienda aislada)

Definición de la medida_ Ventanas dobles

El coste de esta inversión incluye: carpintería de PVC, doble acristalamiento estándar 4/10/4 con cámara de aire, selladores, así como todos aquellos trabajos y medios auxiliares necesarios para su colocación. Con una transmitancia térmica total de 1,73 (W/m2.K) y un factor solar del 77%.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Ventanas	7,59	279,16 €	2.118,82 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m2. Estimando un precio medio de la energía de 0.097 €/kWh

de 0.037 C/KVVII		
CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	438,70
Refrigeración	22,27	20,30
ACS	24,82	24,82
Total	490,52	483,82
TOTAL VIVIENDA (kWh/año)	59.352,92	58.542,22
		l
COSTE ANUAL	5.757,23 €	5.678,60 €
DEDUCCIÓN CONCUNTO	F0.57.0	7.00
REDUCCIÓN CONSUMO	78,63 €	1,4 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	328,60
D. 6.1		320,00
Refrigeración	36,44	33,00
ACS Refrigeración	36,44 17,77	·
-	· ·	33,00
ACS	17,77	33,00 17,77
ACS Total	17,77 386,40	33,00 17,77 379,67
ACS Total	17,77 386,40	33,00 17,77 379,67
ACS Total TOTAL VIVIENDA (kWh/año)	17,77 386,40 46.754,4	33,00 17,77 379,67 45.940,07

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
78,63 €	27 años	50 años

Nota: Aunque invertir en ventanas de alta eficiencia energética pueda tener un coste elevado con una amortización tardía, hay que tener en cuenta que supone un gran avance en sostenibilidad, ahorro energético y que existen subvenciones por parte del Estado.

Protección solar con celosía (Vivienda aislada)

Definición de la medida_ Protección solar con celosía

El coste de esta inversión incluye: Anclaje mecánico con taco de nylon y tornillo galvanizado, celosía fija de aluminio horizontal formado por lamas fijas (vuelo de 1 m), junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Celosía	4,58	142,18 €	651,18 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	443,43
Refrigeración	22,27	16,90
ACS	24,82	24,82
Total	490,52	485,15
TOTAL VIVIENDA (kWh/año)	59.352,92	58.703,15
COSTE ANUAL	5.757,23 €	5.694,21 €
REDUCCIÓN CONSUMO	63,02 €	1,1 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO 332,2
Calefacción	332,19	332,2
Calefacción Refrigeración	332,19 36,44	332,2 27,70
Calefacción Refrigeración ACS	332,19 36,44 17,77	332,2 27,70 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	332,2 27,70 17,77 377,67

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
63,02 €	11 años	50 años

Nota: En este caso, debido a la superficie de los huecos y a la orientación de estos, colocar protectores solares tiene bajo impacto sobre el ahorro en el consumo anual.

Caldera de condensación (Vivienda aislada)

Definición de la medida_ Caldera de condensacións

El coste de esta inversión incluye: Caldera mural de condensación a gas natural para calefacción y ACS (potencia nominal 24 kW, potencia de calefacción 25 kW, potencia de A.C.S. 25 kW, rendimiento en calefacción 94%, rendimiento en A.C.S. 85%, eficiencia energética clase A) junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Caldera condensación	1.798,20 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh

de 0.037 C/KVVII		
CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	327,30
Refrigeración	22,27	22,30
ACS	24,82	19,40
Total	490,52	369,00
TOTAL VIVIENDA (kWh/año)	59.352,92	44.649,00
		ı
COSTE ANUAL	5.757,23 €	4.330,95 €
	1	
REDUCCIÓN CONSUMO	1.426,28 €	24,8 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	332,19
Refrigeración	36,44	36,44
ACS	17,77	17,77
Total	386,40	386,40
TOTAL VIVIENDA (kWh/año)	46.754,40	46.754,40
COSTE ANUAL	4.535,17 €	4.535,17 €
COSTE ANUAL REDUCCIÓN DEMANDA	4.535,17 € 0 €	4.535,17 € 0 %

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 170,83€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
1.426,28 €	2 años	15 años

Nota: Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Caldera de biomasa (Vivienda aislada)

Definición de la medida_ Caldera de biomasa

El coste de esta inversión incluye: Caldera de biomasa alimentada por pellets para calefacción y ACS (potencia nominal 26,5 kW, potencia de calefacción 25 kW, potencia de A.C.S. 25 kW, rendimiento en calefacción 90%, rendimiento en A.C.S. 85%, eficiencia energética clase A) junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Caldera biomasa	2.399,00 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	495,80
Refrigeración	22,27	22,30
ACS	24,82	28,20
Total	490,52	546,30
TOTAL VIVIENDA (kWh/año)	59.352,92	66.102,30
COSTE ANUAL	5.757,23 €	6.411,92 €
REDUCCIÓN CONSUMO	-654,69 €	-11,4 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO 332,19
Calefacción	332,19	332,19
Calefacción Refrigeración	332,19 36,44	332,19 36,44
Calefacción Refrigeración ACS	332,19 36,44 17,77	332,19 36,44 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	332,19 36,44 17,77 386,40

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 107,96€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
-654,69 €	NO AMORTIZA	20 años

Nota: En este caso instalar una caldera de biomasa sería menos rentable que el sistema existente, pero hay que tener en cuenta que supone un gran avance en sostenibilidad y que existen subvenciones por parte del Estado. Aunque la quema de biomasa resulta beneficiosa es imprescindible filtrar los humos de salida. Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Aerotermia (Vivienda aislada)

Definición de la medida_ Sistema de aerotermia

El coste de esta inversión incluye: Sistema de aerotermia con un SCOP de 5,63 y un SEER de 4,41, junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Sistema aerotermia	4.483,00 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	59,00
Refrigeración	22,27	8,30
ACS	24,82	24,80
Total	490,52	92,10
TOTAL VIVIENDA (kWh/año)	59.352,92	11.144,10
COSTE ANUAL	5.757,23 €	1.080,98 €
REDUCCIÓN CONSUMO	4.676,25 €	81,22 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 332,19	EDIFICIO MEJORADO 332,19
Calefacción	332,19	332,19
Calefacción Refrigeración	332,19 36,44	332,19 36,44
Calefacción Refrigeración ACS	332,19 36,44 17,77	332,19 36,44 17,77
Calefacción Refrigeración ACS Total	332,19 36,44 17,77 386,40	332,19 36,44 17,77 386,40

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
4.676,25 €	1 año	20 años

Nota: Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Solar térmica (Vivienda aislada)

Definición de la medida_ Captador solar térmico

El coste de esta inversión incluye: Captador solar térmico compuesto por paneles de rendimiento óptico 0,761, coeficiente de pérdidas primario 3,39 W/m².K y depósito de acumulación de 110 L, junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Solar térmica	1.821,48 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 121 m². Estimando un precio medio de la energía de 0.097 €/kWh.

	_	
CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	443,43	443,43
Refrigeración	22,27	22,27
ACS	24,82	7,00
Total	490,52	472,70
TOTAL VIVIENDA (kWh/año)	59.352,92	57.196,70
COSTE ANUAL	5.757,23 €	5.548,08 €
REDUCCIÓN CONSUMO	209,15 €	3,63 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	332,19	332,19
Refrigeración	36,44	36,44
ACS	17,77	17,77
Total	386,40	386,40
. 5 ca.		
TOTAL VIVIENDA (kWh/año)	46.754,40	46.754,40
	46.754,40 4.535,17 €	46.754,40 4.535,17 €

Estudio de rentabilidad

Con un tipo de interés del 3% y un gasto de mantenimiento anual de 138,43€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
209,15 €	NO AMORTIZA	20 años

Nota: En este caso instalar una caldera de biomasa sería menos rentable que el sistema existente, pero hay que tener en cuenta que supone un gran avance en sostenibilidad y que existen subvenciones por parte del Estado. Aunque la quema de biomasa resulta beneficiosa es imprescindible filtrar los humos de salida. Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Varias medidas (Vivienda bloque)

Definición de la medida_ SATE, aislamiento en cubierta, ventanas de EE y aerotermia

El coste de esta inversión incluye: sistema SATE con 80 mm de lana de roca, aislamiento exterior en cubierta de 100 mm de XPS, ventanas de PVC con doble acristalamiento de baja emisividad térmica y un sistema de aerotermia con un SCOP de 5,63 y un SEER de 4,41, junto con todos los trabajos y medios auxiliares requeridos

ELEMENTO	COSTE TOTAL
Fachada, cubierta, ventanas y sistema aerotérmico	20.591,71 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	12,40
Refrigeración	13,50	4,50
ACS	6,82	6,82
Total	226,74	23,72
TOTAL VIVIENDA (kWh/año)	13.241,62	1.385,25
COSTE ANUAL	1,284,44 €	134,37 €
REDUCCIÓN CONSUMO	1.150,07 €	89,54%
	ı	ı
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	69,80
Calefacción Refrigeración	285,54 25,94	
	· ·	69,80
Refrigeración	25,94	69,80 20,00
Refrigeración ACS	25,94 17,77	69,80 20,00 17,77
Refrigeración ACS Total	25,94 17,77 329,2 5	69,80 20,00 17,77 107,57
Refrigeración ACS Total	25,94 17,77 329,2 5	69,80 20,00 17,77 107,57
Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	25,94 17,77 329,2 5 19.228,20	69,80 20,00 17,77 107,57 6.282,09

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
1.150,07 €	15 años	20 años

Ficha **VB0.2**

Varias medidas (Vivienda bloque)

Definición de la medida_ SATE, aislamiento en cubierta y aerotermia

El coste de esta inversión incluye: sistema SATE con 80 mm de lana de roca, aislamiento exterior en cubierta de 100 mm de XPS y un sistema de aerotermia con un SCOP de 5,63 y un SEER de 4,41, junto con todos los trabajos y medios auxiliares requeridos.

ELEMENTO	COSTE TOTAL
Fachada, cubierta y sistema aerotérmico	10.168,09 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	29,80
Refrigeración	13,50	5,40
ACS	6,82	6,82
Total	226,74	42,02
TOTAL VIVIENDA (kWh/año)	13.241,62	2.453,97
COSTE ANUAL	1,284,44 €	238,03 €
REDUCCIÓN CONSUMO	1.046,41 €	81,5%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 285,54	EDIFICIO MEJORADO
Calefacción	285,54	167,80
Calefacción Refrigeración	285,54 25,94	167,80 24,00
Calefacción Refrigeración ACS	285,54 25,94 17,77	167,80 24,00 17,77
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,2 5	167,80 24,00 17,77 209,57

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€..

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
1.046,41 €	10 años	20 años

Fachada SATE 8 cm (Vivienda bloque)

Definición de la medida_SATE

El coste de esta inversión incluye las acciones previas de tratamiento del soporte, así como: estructura de soporte, mortero de fijación, panel de lana de roca de 80 mm, tacos para fijación, malla de fibra, mortero de acabado y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,45 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	74,07	73,00 €	5.407,11 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

	I	
CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	146,90
Refrigeración	13,50	13,70
ACS	6,82	6,82
Total	226,74	167,42
TOTAL VIVIENDA (kWh/año)	13.241,62	9.777,33
COSTE ANUAL	1,284,44 €	948,40 €
	- I	I
REDUCCIÓN CONSUMO	336,04 €	26,2%
	ı	ı
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 285,54	EDIFICIO MEJORADO 69,80
Calefacción	285,54	69,80
Calefacción Refrigeración	285,54 25,94	69,80 20,00
Calefacción Refrigeración ACS	285,54 25,94 17,77	69,80 20,00 17,77
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,25	69,80 20,00 17,77 107,57
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,25	69,80 20,00 17,77 107,57
Calefacción Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	285,54 25,94 17,77 329,25 19.228,20	69,80 20,00 17,77 107,57 6.282,09

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
336,04 €	16 años	30 años

Fachada SATE 10 cm (Vivienda bloque)

Definición de la medida_SATE

El coste de esta inversión incluye las acciones previas de tratamiento del soporte, así como: estructura de soporte, mortero de fijación, panel de lana de roca de 100 mm, tacos para fijación, malla de fibra, mortero de acabado y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,36 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	74,07	83,16 €	6.159,66 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	142,50
Refrigeración	13,50	13,70
ACS	6,82	6,82
Total	226,74	163,02
TOTAL VIVIENDA (kWh/año)	13.241,62	9.520,37

COSTE ANUAL	1,284,44 €	923,48 €
REDUCCIÓN CONSUMO	360,96 €	28,1%

DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	197,10
Refrigeración	25,94	26,40
ACS	17,77	17,77
Total	329,25	241,27
TOTAL VIVIENDA (kWh/año)	19.228,20	14.090,17

COSTE ANUAL	1.865,13 €	1.366,75 €
REDUCCIÓN DEMANDA	498,38 €	26,7%

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
360,96 €	17 años	30 años

Aislamiento exterior Cubierta 10 cm (Vivienda bloque)

Definición de la medida_ Aislamiento exterior en cubierta

El coste de esta inversión incluye: dos paneles rígidos de 40 y 60 mm de aislamiento (XPS) junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,34 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Cubierta	29,20	9,52 €	277,98 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	180,90
Refrigeración	13,50	12,30
ACS	6,82	6,82
Total	226,74	200,02
TOTAL VIVIENDA (kWh/año)	13.241,62	11.681,17
COSTE ANUAL	1,284,44 €	1.133,07 €
REDUCCIÓN CONSUMO	151,37 €	11,8%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	250,20
Refrigeración	25,94	23,60
ACS	17,77	17,77
Total	329,25	290,57
	10 220 20	17.027,69
TOTAL VIVIENDA (kWh/año)	19.228,20	
TOTAL VIVIENDA (kWh/año) COSTE ANUAL	1.865,13 €	1.651,69 €

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
151,37 €	2 años	30 años

Aislamiento exterior Cubierta 12 cm (Vivienda bloque)

Definición de la medida_ Aislamiento exterior en cubierta

El coste de esta inversión incluye: dos paneles rígidos de 50 y 70 mm de aislamiento (XPS) junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,28 (W/m2.K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Cubierta	29,20	11,03 €	322,08 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	179,70
Refrigeración	13,50	12,20
ACS	6,82	6,82
Total	226,74	198,72
TOTAL VIVIENDA (kWh/año)	13.241,62	11.605,25
COSTE ANUAL	1,284,44 €	1.125,71 €
REDUCCIÓN CONSUMO	158,73 €	12,4%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
		*
Calefacción	285,54	248,60
Calefacción Refrigeración	285,54 25,94	248,60 23,50
	· ·	· ·
Refrigeración	25,94	23,50
Refrigeración ACS	25,94 17,77	23,50 17,77
Refrigeración ACS Total	25,94 17,77 329,2 5	23,50 17,77 289,87

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
158,73 €	3 años	30 años

Aislamiento interior Fachada 8 cm (Vivienda bloque)

Definición de la medida_ Aislamiento interior en fachada

El coste de esta inversión incluye: 80 mm de panel rígido XPS, fijación mecánica y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,45 (W/m².K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	74,07	17,60 €	1.303,63 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	146,90
Refrigeración	13,50	13,70
ACS	6,82	6,82
Total	226,74	167,42
TOTAL VIVIENDA (kWh/año)	13.241,62	9.777,33
COSTE ANUAL	1,284,44 €	948,40 €
REDUCCIÓN CONSUMO	336,04 €	26,2%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	203,10
Refrigeración	25,94	26,40
ACS	17,77	17,77
Total	329,25	247,27
TOTAL VIVIENDA (kWh/año)	19.228,20	14.440,57
COSTE ANUAL	1.865,13 €	1.400,74 €

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
336,04 €	4 años	30 años

Aislamiento interior Cubierta 10 cm (Vivienda bloque)

Definición de la medida_ Aislamiento interior en cubierta

El coste de esta inversión incluye: 100 mm de panel rígido de lana de roca, fijación mecánica y todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,35 (W/m².K).

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Cubierta	29,20	18,77 €	548,08 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m2. Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	181,10
Refrigeración	13,50	12,30
ACS	6,82	6,82
Total	226,74	200,22
TOTAL VIVIENDA (kWh/año)	13.241,62	11.692,85
COSTE ANUAL	1,284,44 €	1.134,21 €
REDUCCIÓN CONSUMO	150,23 €	11,7%
		EDIFICIO MEZODADO
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	250,5
Calefacción Refrigeración	285,54 25,94	250,5 23,60
	· ·	·
Refrigeración	25,94	23,60
Refrigeración ACS	25,94 17,77	23,60 17,77
Refrigeración ACS Total	25,94 17,77 329,2 5	23,60 17,77 291,87
Refrigeración ACS Total	25,94 17,77 329,2 5	23,60 17,77 291,87
Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	25,94 17,77 329,2 5 19.228,20	23,60 17,77 291,87 17.045,21

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
150,23 €	4 años	30 años

Fachada ventilada (Vivienda bloque)

Definición de la medida_ Aislamiento interior en fachada

El coste de esta inversión incluye: 80 mm de panel de lana mineral, fijación metálica, cinta autoadhesiva, placa laminada compacta de alta presión (HPL), subestructura soporte, junto con todos los trabajos y medios auxiliares requeridos. Con una transmitancia térmica de 0,44 $(W/m^2.K)$.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Fachada	74,07	143,24 €	10.609,79 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	146.20
Refrigeración	13,50	13,70
ACS	6,82	6,82
Total	226,74	166,72
TOTAL VIVIENDA (kWh/año)	13.241,62	9.736,45
COSTE ANUAL	1,284,44 €	944,44 €
REDUCCIÓN CONSUMO	340,00 €	26,5%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	202,30
Refrigeración	25,94	26,40
ACS	17,77	17,77
Total	329,25	246,47
TOTAL VIVIENDA (kWh/año)	19.228,20	14.393,85
COSTE ANUAL	1.865,13 €	1.396,20 €

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
340 €	32 años	50 años

Ventanas de mayor EE (Vivienda bloque)

Definición de la medida_ Ventanas de mayor eficiencia energética

El coste de esta inversión incluye: carpintería de PVC, doble acristalamiento templado de baja emisividad térmica 4/10/6 con cámara de aire, selladores, así como todos aquellos trabajos y medios auxiliares necesarios para su colocación. Con una transmitancia térmica total de 1,65 (W/m².K) y un factor solar del 70%.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Ventanas	33,33	312,74 €	10.423,62 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	135,60
Refrigeración	13,50	11,40
ACS	6,82	6,82
Total	226,74	153,82
TOTAL VIVIENDA (kWh/año)	13.241,62	8.983,09
COSTE ANUAL	1,284,44 €	871,36 €
REDUCCIÓN CONSUMO	413,08 €	32,2%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO DAGE	
	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	EDIFICIO MEJORADO 187,60
Calefacción	285,54	187,60
Calefacción Refrigeración	285,54 25,94	187,60 21,90
Calefacción Refrigeración ACS	285,54 25,94 17,77	187,60 21,90 17,77
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,25	187,60 21,90 17,77 227,27

Estudio de rentabilidad

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
413,08 €	26 años	50 años

Ventanas dobles (Vivienda bloque)

Definición de la medida_ Ventanas dobles

El coste de esta inversión incluye: carpintería de PVC, doble acristalamiento estándar 4/10/4 con cámara de aire, selladores, así como todos aquellos trabajos y medios auxiliares necesarios para su colocación. Con una transmitancia térmica total de 1,73 (W/m².K) y un factor solar del 77%.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Ventanas	33,33	279,16 €	9.304,40 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	133,80
Refrigeración	13,50	12,30
ACS	6,82	6,82
Total	226,74	152,92
TOTAL VIVIENDA (kWh/año)	13.241,62	8.930,53
COSTE ANUAL	1,284,44 €	866,26 €
REDUCCIÓN CONSUMO	418,18 €	32,6%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	185,10
Refrigeración	25,94	23,60
Refrigeración ACS	25,94 17,77	23,60 17,77
_		
ACS	17,77	17,77
ACS Total	17,77 329,25	17,77 226,47

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
418,18 €	23 años	50 años

Nota: Aunque invertir en ventanas pueda tener un coste elevado con una amortización tardía, hay que tener en cuenta que supone un gran avance en sostenibilidad, ahorro energético y que existen subvenciones por parte del Estado.

Protección solar con celosía (Vivienda bloque)

Definición de la medida_ Protección solar con celosía

El coste de esta inversión incluye: Anclaje mecánico con taco de nylon y tornillo galvanizado, celosía fija de aluminio horizontal formado por lamas fijas (vuelo de 1 m), junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO CONSTRUCTIVO	SUPERFICIES REHABILITADAS (M²)	Coste por m²	COSTE TOTAL
Celosía	9,16	142,18 €	1.302,37 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	206,42
Refrigeración	13,50	11,00
ACS	6,82	6,82
Total	226,74	224,24
TOTAL VIVIENDA (kWh/año)	13.241,62	13.095,62
COSTE ANUAL	1,284,44 €	1.270,27 €
REDUCCIÓN CONSUMO	14,17 €	1,1%
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	285,54
Refrigeración	25,94	21,10
ACS	17,77	17,77
	329,25	324,41
Total		
Total TOTAL VIVIENDA (kWh/año)	19.228,20	18.945,54
	19.228,20	18.945,54 1.837,72 €

Estudio de rentabilidad

Con un tipo de interés del 3%.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
14,17 €	NO AMORTIZA	50 años

Nota: En este caso, debido a la superficie de los huecos y a la orientación de estos, colocar protectores solares tiene escaso impacto sobre el ahorro en el consumo anual.

Caldera de condensación (Vivienda bloque)

Definición de la medida_ Caldera de condensación

El coste de esta inversión incluye: Caldera mural de condensación a gas natural para calefacción y ACS (potencia nominal 24 kW, potencia de calefacción 25 kW, potencia de A.C.S. 25 kW, rendimiento en calefacción 94%, rendimiento en A.C.S. 85%, eficiencia energética clase A) junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación..

ELEMENTO	COSTE TOTAL
Caldera condensación	1.798,20 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	378,61	281,30
Refrigeración	13,50	13.50
ACS	6,82	5,80
Total	398,93	300,60
TOTAL VIVIENDA (kWh/año)	23.297,51	17.555,04
COSTE ANUAL	2.259,86 €	1.702,84 €
REDUCCIÓN CONSUMO	557,02 €	24,7 %
		_
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 285,54	EDIFICIO MEJORADO 285,54
Calefacción	285,54	285,54
Calefacción Refrigeración	285,54 25,94	285,54 25,94
Calefacción Refrigeración ACS	285,54 25,94 17,77	285,54 25,94 17,77
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,25	285,54 25,94 17,77 329,25

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 170,83€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
557,02 €	4 años	15 años

Nota: En este caso el edificio modelo ya contaba con un sistema de calefacción por bomba de calor, obteniendo un alto rendimiento, por ello se ha procedido a sustituirlo por una caldera estándar de modo que pueda verse la diferencia que supondría en el ahorro instalar una caldera de condensación. Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética

Caldera de biomasa (Vivienda bloque)

Definición de la medida_ Caldera de biomasa

El coste de esta inversión incluye: Caldera de biomasa alimentada por pellets para calefacción y ACS (potencia nominal 26,5 kW, potencia de calefacción 25 kW, potencia de A.C.S. 25 kW, rendimiento en calefacción 90%, rendimiento en A.C.S. 85%, eficiencia energética clase A) junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Caldera biomasa	2.399,00 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	378,61	426,20
Refrigeración	13,50	13.50
ACS	6,82	8,50
Total	398,93	448,20
TOTAL VIVIENDA (kWh/año)	23.297,51	26.174,88
COSTE ANUAL	2.259,86 €	2.538,96 €
REDUCCIÓN CONSUMO	-279,10 €	-12,4 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	285,54
Calefacción Refrigeración	285,54 25,94	285,54 25,94
	ŕ	,
Refrigeración	25,94	25,94
Refrigeración ACS	25,94 17,77	25,94 17,77
Refrigeración ACS Total	25,94 17,77 329,25	25,94 17,77 329,25

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 107,96€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
-279,10 €	NO AMORTIZA	20 años

Nota: En este caso el edificio modelo ya contaba con un sistema de calefacción por bomba de calor, obteniendo un alto rendimiento, por ello se ha procedido a sustituirlo por una caldera estándar de modo que pueda verse la diferencia que supondría en el ahorro instalar una caldera de biomasa. En el estudio sería menos rentable colocar la caldera de biomasa, no obstante, hay que tener en cuenta que supone un gran avance en sostenibilidad y que existen subvenciones por parte del Estado. Aunque la quema de biomasa resulta beneficiosa es imprescindible filtrar los humos de salida. Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Aerotermia (Vivienda bloque)

Definición de la medida_ Sistema de aerotermia

El coste de esta inversión incluye: Sistema de aerotermia con un SCOP de 5,63 y un SEER de 4,41, junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Sistema aerotermia	4.483,00 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

		l
CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	50,70
Refrigeración	13,50	5,90
ACS	6,82	6,82
Total	226,74	63,42
TOTAL VIVIENDA (kWh/año)	13.241,62	3.703,73
COSTE ANUAL	1284,44 €	359,26 €
COSTE ANUAL	1264,44 €	339,26 €
REDUCCIÓN CONSUMO	925,18 €	72,0 %
	-	,
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
DEMANDA DE ENERGÍA (KWH/M².AÑO) Calefacción	EDIFICIO BASE 285,54	EDIFICIO MEJORADO 285,54
Calefacción	285,54	285,54
Calefacción Refrigeración	285,54 25,94	285,54 25,94
Calefacción Refrigeración ACS	285,54 25,94 17,77	285,54 25,94 17,77
Calefacción Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	285,54 25,94 17,77 329,2 5 19.228,20	285,54 25,94 17,77 329,25 19.228,14
Calefacción Refrigeración ACS Total	285,54 25,94 17,77 329,25	285,54 25,94 17,77 329,25
Calefacción Refrigeración ACS Total TOTAL VIVIENDA (kWh/año)	285,54 25,94 17,77 329,2 5 19.228,20	285,54 25,94 17,77 329,25 19.228,14

Estudio de rentabilidad

Con un tipo de interés del 3%, un incremento del precio del combustible de 5% y un gasto de mantenimiento anual de 286,91€.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
418,18 €	23 años	50 años

Nota: Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

Solar térmica (Vivienda bloque)

Definición de la medida_ Captador solar térmico

El coste de esta inversión incluye: Captador solar térmico compuesto por paneles de rendimiento óptico 0,761, coeficiente de pérdidas primario 3,39 W/m².K y depósito de acumulación de 110 L, junto con todos aquellos trabajos y medios auxiliares necesarios para su colocación.

ELEMENTO	COSTE TOTAL
Solar térmica	1.400,30 €

Repercusiones en el consumo y la demanda del edificio

Para una vivienda con una superficie de 58,40 m². Estimando un precio medio de la energía de 0.097 €/kWh.

CONSUMO DE ENERGÍA FINAL (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	206,42	206,42
Refrigeración	13.50	13.50
ACS	22,74	6,82
Total	242,66	226,74
TOTAL VIVIENDA (kWh/año)	14.171,34	13.241,62
COSTE ANUAL	1.374,62 €	1.284,44 €
REDUCCIÓN CONSUMO	90,18 €	0,1 %
DEMANDA DE ENERGÍA (KWH/M².AÑO)	EDIFICIO BASE	EDIFICIO MEJORADO
Calefacción	285,54	285,54
Calefacción Refrigeración	285,54 25,94	285,54 25,94
	·	
Refrigeración	25,94	25,94
Refrigeración ACS	25,94 17,77	25,94 17,77
Refrigeración ACS Total	25,94 17,77 329,25	25,94 17,77 329,25

Estudio de rentabilidad

Con un tipo de interés del 3% y un gasto de mantenimiento anual de 106,42 €.

AHORRO ANUAL	AMORTIZACIÓN	VIDA ÚTIL
-279,10 €	NO AMORTIZA	20 años

Nota: En este caso el edificio modelo ya contaba con un sistema de calefacción por bomba de calor, obteniendo un alto rendimiento, por ello se ha procedido a sustituirlo por una caldera estándar de modo que pueda verse la diferencia que supondría en el ahorro instalar una caldera de biomasa. En el estudio sería menos rentable colocar la caldera de biomasa, no obstante, hay que tener en cuenta que supone un gran avance en sostenibilidad y que existen subvenciones por parte del Estado. Aunque la quema de biomasa resulta beneficiosa es imprescindible filtrar los humos de salida. Por tratarse de una medida activa de mejora de la eficiencia solo afecta al consumo, pero no a la demanda energética.

EN CLASE (DE LA MICROPROGRAMACIÓN)

UNIDAD DIDÁCTICA 1

Título: Legislación aplicable en edificios nuevos y existentes

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción de la legislación aplicable de un modo comprensible y ameno para el alumno.

Objetivo: Conocer la legislación en materia de eficiencia energética que determina en gran medida el porqué de las actuaciones de ahorro energético en edificios.

Título: Las medidas de eficiencia energética: Definición y clasificación.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción y clasificación de la las medidas de eficiencia energética de un modo comprensible y ameno para el alumno.

Objetivos: Conocer la legislación en materia de eficiencia energética que determina en gran medida el porqué de las actuaciones de ahorro energético en edificios.

Título: Fases de estudio y toma de decisiones en la adopción de medidas de eficiencia energética.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción de las fases de estudio y toma de decisiones en la adopción de medidas de eficiencia energética de un modo comprensible y ameno para el alumno.

Objetivos: Conocer el proceso de toma de decisiones para adoptar medidas de eficiencia energética en los edificios.

UNIDAD DIDÁCTICA 2

Título: Parámetros económicos: Principios básicos.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción de los principios básicos de los parámetros económicos en el campo de la eficiencia energética de un modo comprensible y ameno para el alumno.

Objetivos: Familiarizarse con los parámetros económicos fundamentales que determinan la rentabilidad económica de las medidas en eficiencia energética y las fases del hecho constructivo en las que intervienen decisivamente.

Título: Interpretación de los parámetros económicos: La viabilidad y la rentabilidad.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción de los principios básicos de los parámetros económicos en el campo de la eficiencia energética de un modo comprensible y ameno para el alumno.

Objetivos: Analizar la viabilidad de medidas en eficiencia energética a partir de los parámetros económicos asociados.

Título: La influencia de la ejecución y el mantenimiento de los edificios en la rentabilidad económica.

Descripción: El docente, apoyado con ejemplos prácticos en edificaciones o instalaciones reales, como demostradores y laboratorios de eficiencia energética, desarrollará los aspectos más relevantes respecto a la influencia de la ejecución y el mantenimiento de los edificios en la rentabilidad económica de un modo comprensible y ameno para el alumno.

Objetivos: Identificar los parámetros económicos en los cuales su actividad en el sector de la construcción tiene una influencia directa.

UNIDAD DIDÁCTICA 3

Título: Actuaciones sobre los edificios y sus instalaciones en su ejecución y mantenimiento.

Descripción: El docente, apoyado con las diapositivas y ejemplos, así como mediante prácticas en demostradores e instalaciones reales, desarrollará los puntos más relevantes acerca de las diferentes actuaciones y buenas prácticas sobre los edificios y sus instalaciones, tanto en su ejecución como en su mantenimiento, de modo comprensible para los alumnos.

Objetivos: Realizar de forma autónoma cualquier modificación en la ejecución o mantenimiento de los edificios en beneficio de la rentabilidad económica, sin perjudicar otro aspecto del hecho constructivo y que mejore alguno de los parámetros económicos.

Título: Actuaciones de planificación y organización.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará la descripción de las actuaciones de planificación y organización en las intervenciones de eficiencia energética.

Objetivos: Planificar y organizar los trabajos teniendo en cuenta la rentabilidad económica.

Título: Actuaciones para la mejora en las condiciones de los parámetros económicos.

Descripción: El docente, apoyado con las diapositivas y ejemplos, así como mediante prácticas en demostradores e instalaciones reales, explicará de modo comprensible para los alumnos, las actuaciones para la mejora en las condiciones de los parámetros económicos.

Objetivos: Conocer los métodos de financiación existentes para promotores/ propietarios para favorecer la adopción de medidas de eficiencia energética.

Título: Actuaciones de apoyo, concienciación y promoción de la eficiencia energética como estrategia de rentabilidad económica.

Descripción: El docente, apoyado con las diapositivas y ejemplos, desarrollará los puntos más relevantes acerca de las diferentes actuaciones sobre los edificios y sus instalaciones, tanto en su ejecución como en su mantenimiento, de modo comprensible para los alumnos.

Objetivos: Conocer los métodos de financiación existentes para promotores/ propietarios para favorecer la adopción de medidas de eficiencia energética.